PSL

UNIVERSITE PARIS

HABILITATION A DIRIGER
DES RECHERCHES

DE L'UNIVERSITE PSL

Présentée a I'Université Paris-Dauphine

Service-oriented Systems Quality Matter: Contributions

to Efficiency, Reliability and Trustworthiness

Présentation des travaux par

Joyce EL HADDAD
Le 16 décembre 2025

Discipline
Informatique

Pauphine | PSL*

Composition du jury :

Cristina, BAZGAN
PU, Université Paris Dauphine-PSL

Salima, BENBERNOU
PU, Université Paris Cité

Schahram, DUSTDAR
PU, TU Wien

Nikolaos, GEORGANTAS
CR, INRIA Paris

Djamal, BENSLIMANE
PU, Université Claude Bernard Lyon 1

Daniela, GRIGORI
PU, Université Paris Dauphine-PSL

Présidente

Rapporteure

Rapporteur

Rapporteur

Examinateur

Coordinatrice

Acknowledgments

It has been a long journey to reach this point.

First of all, I would like to thank the committee members for agreeing to serve on my defence jury: Sal-
ima Benbernou, Schahram Dustdar, and Nikolaos Georgantas for reviewing the manuscript and for their
kind reports; Djamal Benslimane who very quickly agreed to act as external examiner; Cristina Bazgan for
chairing the committee and for our numerous discussions; and Daniela Grigori for serving as coordinator
of the habilitation and for placing her trust in me. It was a great honor to have you all as members of the

jury.

The research work presented in this manuscript is the result of teamwork that would not have been
possible without the fruitful collaboration with many researchers from national and international institu-
tions, as well as several doctoral and master’s students. My sincere thanks go to (in chronological order)
Serge Haddad, Maude Manouvrier, Marta Rukoz, Yudith Cardinale, Maria-Esther Vidal, Eduardo Blanco,
Guillermo Ramirez, Faisal Abu-Khzam, Cristina Bazgan, Florian Sikora, Olivier Spanjaard, Lidia Fuentes,
Nadia Gamez, Suzanne Pinson, Noura Faci, Zakaria Maamar, Daniela Grigori, Thomas Degueule, and
Pascal Poizat. I am deeply grateful to all of you, I have learned a lot from each one of you. A big thank
you also to all the Ph.D. students I have had the pleasure to work with over the years, Amine Louati, Wis-
sam Gherissi, and Damien Jaime.

I would also like to express my sincere appreciation to all my colleagues at LAMSADE research cen-
ter. A special thanks goes to Jérome Lang, with whom I work closely since 2024 as deputy director of
LAMSADE. I am truly grateful for our discussions and for his advice. To all my other colleagues, whom
I have not mentioned for fear of forgetting some, I would like to thank you for creating such a pleasant
atmosphere that makes our center such a nice place to work.

Last but not least, I would like to thank my family for their constant support. A huge thank you
especially to my husband and to my son for their support throughout this long journey. Thank you both
for your encouragement, which I will never forget, especially during our indoor climbing session.

CONTENTS

1 Introduction

1.1 Context e
1.2 Research Challenges e
1.3 Overview of Contributions
14 Outline e
2 Concepts and Definitions
2.1 UserRequirements e
2.2 Component Service Specification L L L L o
2.3 Composite Service Specification L L o Lo

3 Efficiency and Consistency in Service Selection and Composition

3.1 Motivations e
3.2 State-of-the-art and Contributions
3.3 Heuristic Approaches L
3.4 ExactApproaches e
3.5 A Glimpse on Further Contributions
36 SUMMATY o oo e

4 Reliability in Service Composition Execution

4.1 Motivations L e
4.2 State-of-the-art and Contributions
4.3 Forward and Backward Recovery L o o
4.4 Semantic and Checkpointing Recovery
4.5 A Glimpse on Further Contributions
46 SUMMATY o vttt st e e

5 Trustworthiness in Service Selection and Composition

5.1 Motivations e e e e e e e e e e e e e e
5.2 State-of-the-art and Contributions
5.3 Trust-driven Service Discovery and Selection
5.4 Trust-driven Service Composition. L L L L Lo
55 Summary

6 Conclusion and Future work
6.1 Summary of contributions L L L o
6.2 Towards Large-scale Service-oriented Systems,

Bibliography

CHAPTER

INTRODUCTION

This habilitation thesis manuscript summarizes my research work, which deals with efficiency, reliability, and trust-
worthiness in service-oriented systems. More specifically, I am interested in the optimisation of non-functional prop-
erties in service compositions and their enhancement with social aspects. In this context, I have developed approaches
based on models derived from combinatorial optimization and graph theory, focusing mainly on discovering, select-
ing, composing, and executing services while ensuring quality optimization, failure recovery, and trustworthiness.
My aim in this manuscript is not to provide an exhaustive account of all my research activities in this area, but rather
to give an overview of my scientific approach when tackling a new research challenge.

1.1 Context

One of the key challenges facing organisations is the need to accelerate time-to-market while meeting user
needs. Service orientation is the most appropriate software development approach for addressing this
challenge, as it enables the creation of flexible architectures that can quickly adapt to user requirements.

Service-oriented Systems : Architecture and Computing

Service-Oriented Architecture (SOA) is a specific architectural implementation of service orientation that
emphasises the creation and use of services as fundamental building blocks for developing software sys-
tems (Erl [84]). It encompasses a set of principles describing the foundations for fast development of soft-
ware systems through the interconnection of heterogeneous and distributed services in order to achieve
specific business objectives (Papazoglouetal. [189,190]). Services are autonomous, platform-independent,
computational units that can be described, published, discovered, accessed and used independently via
standard protocols (Stojanovic et al. [212]). Although SOA is not tied to a specific technology, it has been
commonly implemented using Web services and, more recently, Microservices. As defined by the World
Wide Web Consortium, a Web service is a software system designed to support interoperable machine-
to-machine interaction over a network (Booth et al. [36]). Each Web service is identified by a URI and
exposes its functionality over the Internet using standard XML-based languages and protocols. It has an
interface described using Web Services Description Language (Chinnici et al. [64]), and published in a
UDDI (Universal Description, Discovery, and Integration) registry or repository (Bellwood et al. [23]).

The principles of Service-Oriented Computing (SOC) paradigm, which organises and structures soft-
ware systems based on the notion of services, are integrated into the SOA architectural style. In SOC,
software components are designed to provide services to other components within a network, promoting
a modular, loosely coupled, and interoperable architecture. Today, this paradigm is widely employed in
the development of distributed systems. It abstracts the internal details of services, exposing only their
interface to consumers, as we will describe below.

2 Chapitre 1. Introduction

ontology hotel-reservation
class room, customer, payment
input toCity, checklIn, checkOut, guestNumber, customerName,

email, cardNumber, expiryDate response time availability
output bookinglID, cancellationConfirmation
precondition checkin > currentDate M 94%

postcondition cardNumber isg valid number, and expiryDate >= currentDate

execution cost

- V\\
1. Functional specification 4. Non-functional specification
[| HotelBooking | Tvvv---eeeoooe-
LT T Service eI
2. Signature specification 3. Behavioral specification
operation book &
inputs toCity (string), checkin (date), checkOut(date), guestNumber (integer)
outputs roomType(string), price (float) Payy@
operation pay ® book O
inputs customerName (string), email(string), cardNumber (string), expiryDate (date)
outputs bookingID (string) canM
operation cancel

inputs customerName (string), email(string), checkin (date),checkOut(date),
outputs cancellationConfirmation (string)

Figure 1.1: An Example of a HotelBooking Service Specifications

Service Specifications

As services are intended to be discovered and used by other applications or services, they need to be
described and understood in terms of functional capabilities as well as behavioural specifications and
non-functional requirements. This is known as the service interface, which comprises four description
specifications (Beugnard et al. [29], Canal et al. [43]):

o Functional specification: this includes the formal description of the capability of the service, i.e., what
the service can do. It also specifies the conditions on service inputs (pre-conditions) and outputs (post-
conditions) that must be satisfied before and after the service execution, respectively. In the field of
Web services, this level of description is related to the Semantic Web, using ontologies and lan-
guages such as WSMO (De Bruijn et al. [69]), OWL-S (Martin et al. [165]) or SAWSDL (Farrell
and Lausen [87]). Ontologies are used to semantically define inputs and outputs data terms and
their relationships within the service domain. This corresponds to the description provided for the
HotelBooking service shown in Figure 1.1.

e Signature specification: this describes the actions the service can perform. It refers to the public in-
terface of the service, as in the public interface of a Java class. It defines the name of operations
offered by the service, as well as their required inputs and returned outputs. As for example, the
HotelBooking service in Figure 1.1 allows users to search and book for rooms (book operation), and
to manage their bookings by either purchasing their room reservation (pay operation) or cancelling
their reservation (cancel operation).

o Behavioral specification: this describes how the functionality of a service can be achieved, both in
terms of the internal process it follows (i.e., the state transformation performed by the service) and
in terms of its interactions with other services. Returning to the HotelBooking service example, the
service requires users to invoke its operations in a specific order. Here, both pay and cancel operations
require input data provided by book operation. Consequently, book operation must be executed first,
followed by either the pay or cancel operation. This behavior cannot be deduced solely from the
signature specification and therefore must be explicitly defined. Several proposals have addressed
this issue by extending service interfaces with behavioral descriptions (Bertoli et al. [28], Grigori et
al. [106], Ben Mokhtar et al. [176]).

o Non-functional specification: this refers to the qualities and constraints that describe how a service
performs, rather than what it does. Many non-functional properties, such as responsiveness of the

1.1 Context 3

service measured by estimating its maximum response time, are important to be taken into account
before using a service. For instance, in the case of our Hotelbooking service, invoking its functionality
(booking a room) may be constrained by temporal availability, specifying when the service can
be invoked. Such constraints represent non-functional properties and are addressed at the non-
functional specification level of the service interface. This description level is relevant at both the
architectural level (Losavio et al. [151], Singh et al. [207]) and the component service level (Oriol et
al. [184], Zeng et al. [257]). Non-functional properties at the component service level can be defined
with varying degrees of granularity: coarse-grained at the service level (i.e., viewing the service is as
a black box and associating non-functional properties to the entire service), mid-grained at the path
level (i.e., associating non-functional properties with specific operation sequences, such as the book-
pay in Hotelbooking service), and fine-grained at the transition level (i.e., assigning non-functional
properties to each individual transition within the service’s behavioral specification, where each
transition corresponds to a specific capability).

Most work on service-oriented systems associate interfaces with only a sub-part of these four specifi-
cation levels. In my research, my primary focus has been on the non-functional specification level.

Non-functional Specification

Quality models are fundamental to the evaluation of a system quality. They serve as essential tools for
specifying non-functional properties and requirements, establishing measures and performing quality
evaluations (Oriol et al. [184]). As defined by ISO/IEC 25000 series of standards on system and software
quality models, a quality model is a hierarchical set of quality characteristics and their relationships. A
quality (sub-)characteristic is a category of quality attributes representing inherent properties of an entity,
such as software, services, or processes within a system. However, since quality (sub-)characteristics do
not provide direct measurements, they must to be further decomposed into more specific, fine-grained
concepts, referred to as quality attributes or criteria. When these attributes are clearly defined in measurable
terms, they are referred to as quality metrics or indicators, which enable effective evaluation and monitoring
of system quality.

Example 1.1.1. An example of quality characteristics is Performance. It can be decomposed into sub-
characteristics such as time behavior, capacity, and resource utilization. Time behavior, for instance, can be
further decomposed into quality attributes like response time, latency or throughput. An example of quality
metric is latency that could be measured as the time delay between sending a request to the service and
receiving its response.

Quality attributes can be classified into several categories depending on various factors, including
domain dependency (domain-dependent vs. domain-independent), granularity (atomic vs. composite), mea-
surement type (quantitative vs. qualitative), and measurement periodicity (static vs. dynamic). A compre-
hensive survey on service quality description can be found in Kritikos et al. [132].

e Domain dependency: the domain dependency of quality attributes refers to whether an attribute is
specific to a particular application domain (i.e., domain-dependent) or applicable across multiple
domains (i.e., domain-independent). Domain-dependent attributes are attributes specific to services of
a particular domain. Domain-independent attributes are attributes that apply to all services, regardless
of application domain.

Example 1.1.2. An example of domain-independent attribute is availability that represents the expected
percentage of time the service is operational and accessible, making it applicable to all services, regardless
of the domain. In contrast, certification level of data sources is a domain-dependent attribute specific to
stock market quotes services.

4 Chapitre 1. Introduction

e Granularity: Atomic attributes are quality attributes that cannot be further decomposed into smaller
measurable components. They are self-contained and independent in their evaluation. Composite
attributes are derived from multiple atomic attributes and are computed based on their combined
values. They depend on other attributes for their assessment.

Example 1.1.3. An example of composite attribute could be throughput since it can be computed by evalu-
ating network bandwidth and processing speed. In contrast, execution time is atomic as it does not rely on any
other attribute.

e Measurement type: quality metrics or indicators are measures that provide an estimation or evalu-
ation of specified quality attributes. Their values can be either quantitative (numerical) or qualitative
(categorical), depending on whether the attribute can be measured objectively or is assessed through
subjective means (Agresti [5]):

— Quantitative attributes. These are measurable attributes expressed numerically, offering precise
data that can be statistically analyzed or compared. Quantitative attributes are represented
by integer or real values and can be further divided into discrete or continuous types. Discrete
attributes take on specific values, while continuous attributes can take any value within a range.
Special types of these attributes include interval and ratio-scaled attributes.

— Qualitative attributes. These attributes are assessed through observation, user feedback, and
expert judgment rather than through direct measurement. They can be classified as nominal,
ordinal, or binary. Nominal attributes represent different categories or labels without any in-
herent order (e.g., types of errors). Ordinal attributes have a meaningful order or ranking (e.g.,
user satisfaction levels), while binary attributes can take only two distinct values (e.g., yes/no
or true/false). Binary attributes can be nominal or ordinal, depending on whether they have
inherent order.

Example 1.1.4. An example of quantitative attribute is execution cost that represent the monetary charge
for using a service either per request or per time period, e.g., 0.5 cents per request. In contrast, user satisfac-
tion is a qualitative attribute representing a subjective evaluation of the user experience based on service
performance, taking a value in the set { Excellent, Average, Poor}.

e Measurement periodicity: Static attributes remain constant over time and do not change based on
system state or usage. They are typically defined at design time and do not require continuous
measurement. Dynamic attributes vary over time based on system performance, external conditions,
or user interactions. They require periodic or real-time evaluation.

Example 1.1.5. An example of static attribute is security as it does not change over time, while availability
is dynamic since it fluctuates over time and is computed according to a schedule.

To formally describe quality (sub-)characteristics, three types of quality documents are essential through-
out the service lifecycle (Kritikos et al. in [132]): Service Quality Model used to describe concrete quality
attributes, Quality-based Service Description which defines quality capabilities and requirements as a set
of constraints on quality attributes and metrics, and Service Level Agreement (SLA) which specifies the
contractual quality commitments between service providers and consumers, detailing service levels and
penalties for non-compliance.

In web services field, when it comes to quality dimension, the concept of Quality-of-Service (QoS) has
emerged as a key term in numerous research studies to express non-functional specifications and require-
ments (Jaeger et al.[122], Menasce [171], O’Sullivan et al. [185], Ouzzani and Bouguettaya [186]). Al-
though QoS has been extensively studied across multiple domains, including networking (Chen etal.[62],

1.1 Context 5

Cruz [66]) and distributed systems (Hutchison et al.[116], Le et al. [135]), its role in service-oriented
computing is particularly significant. Based on the QoS performance of Web services, various approaches
have been proposed for Web service selection (Yu and Bouguettaya [250], Zemni et al. [255], Zheng et
al. [265]), Web service composition (Ben Mabrouk et al. [24], Zeng et al. [257]), fault-tolerant Web ser-
vices (Fang et al.[86], Zheng and Lyu [266]), Web service recommendation (Zheng et al. [267], Zheng et
al. [268]), and for Web service reliability prediction (Cardoso et al. [56], Grassi and Patella [102]).

In the remainder of this manuscript, I will use the terms attribute, criterion, indicator, or metric as syn-
onyms. I will also use the term Quality of Service (QoS) to refer to the set of static, domain-independent,
and quantitative attributes provided by a service, such as response time or execution cost. My work inte-
grates a range of attributes, including composite ones such as trust, and qualitative ones such as transac-
tional properties, in order to design efficient, resilient and trustworthy composite services.

Service Composition

Building complex software systems by integrating multiple services is a fundamental aspect of service-
oriented computing, known as service composition process. It enables to integrate independent and reusable
services to achieve specific business goals, such as booking a trip or processing an online order. Service
composition has been a major research domain that has evolved significantly over the years (Bouguettaya
et al. [37], Dustdar and Schreiner [76], Papazoglou et al. [190]). It has been often restricted to Web ser-
vices (Alonso et al. [9]). However, the composition problem extends far beyond Web services and has
been a long-standing challenge in software engineering as for example in Object-Oriented Programming
(Wegner [236]), in Component-Based Programming (Szyperski et al. [217]) and more recently in Cloud
Computing (Ranjan et al. [196], Wang et al. [231]) and Internet-of-Things (Gubbi et al. [108], Truong
et al. [222]). The common goal across these domains is to reuse existing software entities (i.e., objects,
components, or services) as black boxes and compose them to build more complex applications.
To better understand service composition, we explore below its key steps:

e Service Description and Discovery. Service description plays a crucial role in defining, advertis-
ing, and facilitating the discovery of services. In the context of Web services, several standards exist
for service description including WSDL which defines SOAP-based services by detailing available
functions, input/output parameters, and bindings specifications. Beyond syntactic descriptions,
semantic technologies enhance service description by providing rich semantic meaning, enabling
more accurate service discovery (Mcllraith et al., [168]). Once services are described, they must
be discovered based on user requirements. Service discovery involves identifying available services
that meet the required functionalities. In service-oriented computing, discovery approaches gen-
erally fall into two main categories: Keyword-based discovery that searches for services based on
keywords in WSDL descriptions (Cheng et al. [63], He et al. [115]), and Ontology-based semantic
discovery that uses semantic reasoning to identify services with similar functionalities (Benatallah
et al. [25], Sycara et al. [215]). Some others approaches also take into account the service behavior
specification during the discovery process (Grigori et al. [105], Shen and Su [204]).

e Service Selection and Composition. After discovering multiple functionally equivalent candidate
services, the next step is to select the most appropriate ones based on non-functional requirements.
Service selection can occur either at design-time or run-time (Hwang et al. [118]). With design-
time selection, services are chosen before execution, without considering dynamic changes in non-
functional attributes (Eid etal. [77]). While in run-time selection, services are selected during execu-
tion, allowing for adaptation to changes in non-functional attributes (Atrey et al. [19], Stantchev and
Schropfer [211]). In both cases, the selection step consists of identifying the best candidate services
or compositions based on non-functional criteria. The criterion may be single such as the fastest exe-
cution time or the less expensive, or multiple, which requires the use of appropriate Multiple Criteria
Decision Making techniques to aggregate criteria effectively. In service-oriented computing, various
QoS-based apporaches have been proposed for service selection (Bonatti and Festa [35], Cardellini
et al. [46], Yu et al. [253], Zheng et al. [265]) and for service composition (Alrifai et Risse [10],
Ardagna et Pernici [17], Cardellini et al. [45], Cardellini et al. [46], Zeng et al. [257]).

6 Chapitre 1. Introduction

e Service Execution and Recovery. Once services or compositions are selected at design-time, the
next step is their execution. During this phase, challenges beyond service invocation must be ad-
dressed, particularly failure recovery to ensure correct and reliable execution. During the execution
of a composite service, various situations can cause failures in its component services. The failure
of a single service may result in the failure of the entire composite service execution. Many failure
recovery approaches have been proposed to manage and recover from failures during composite
service execution (Gao et al. [94]). Some of the proposed approaches use forward recovery that
attempts to complete the execution of the composite service by retrying or replacing the failed com-
ponent (Dolog et al. [71], Issarny et al. [120], Yan et al. [243]). Other approaches use backward
recovery to restore the system to a previously correct state, typically implemented using rollback,
compensation, or checkpointing mechanisms (Angarita et al. [14], Dialani et al. [70], Mansour and
Dillon [164], Marzouk et al. [166], Xu et al. [241]).

Service composition is a cornerstone of service-oriented computing, and its effectiveness relies on
overcoming several challenges including accurate service discovery, efficient and trustworthy selection
and composition, reliable execution, and supporting failure recovery mechanisms. In this manuscript,
the presented work focuses specifically on these critical aspects of the service composition process. Each
challenge is addressed using combinatorial optimization and graph theory, with the primary objective of
optimizing non-functional properties.

Service Composition Representation

To model and describe service compositions, a variety of languages and graphical representations are
commonly used (Paik et al. [187]). These representations help in understanding the structure, flow, and
interactions within a composite service. Among them, Diagram-based representations are the most widely
used. They consist of symbols that represent component services of a composition and connectors that
indicate control flow, data flow, or other relationships between these components (Lemos et al. [137]). In
the context of service-oriented computing, diagram-based representations can generally be categorized
into two main types:

e Process-based representation: it models the structure of a service composition (i.e., its service compo-
nents and their relationships) using workflow models. These define control flow constructs (se-
quential, parallel, and conditional), along with data flow and communication between service com-
ponents. A workflow specifies an abstract composition in which each task can later be instanti-
ated with a concrete component service. Once all tasks are mapped to specific services, the work-
flow yields a concrete composite service. Multiple composite services may result from the same
workflow, depending on service assignments. Common languages for modeling service composi-
tions in this paradigm include Business Process Model and Notation (BPMN) (Object Management
Group [107]), Business Process Execution Language (BPEL) (Andrews et al. [13]), Yet Another
Workflow Language (YAWL) (Van Der Aalst and Ter Hofstede [227]), and state charts (Zeng et
al. [256]).

o Graph-based representation: it captures the logical structure including concurrency and dependencies
between service components, as well as the flow of execution. Common models include Petri Nets
(Hamadi and Benatallah [110]) and dependency graphs (Liang et al. [143], Zheng and Yan [264]).
A Petri net is a bipartite graph where nodes are either places or transitions. Places (depicted as
circles) represent states. Transitions (depicted as squares) represent service invocations or internal
steps for modeling control flow constructs. Places and transitions are connected by directed arcs.
A Petri net may have an associated marking, which assigns tokens to places, representing data of a
composition. Dependency graphs, on the other hand, represent input-output dependencies between
services by using a directed graph where services are modeled as nodes and their dependencies as
edges.

To illustrate service composition representation, consider the following motivating scenario:

1.1 Context 7

- OF
Hotel Booking

(1)
~—

> Flight Booking

p2O p3
(12) /
— l l \
@ N |HotelBooking| |F|ighlBooking||TrainBooking” CarSharing |
X>—P Train Booking BPMN Notation
(T3) O Start
—
QO ena p4 p5
5 @ Service Task

| Car Sharing
(T4)

—— Sequence flow

<-|> Parallel gateway
® Exclusive gateway O p6

(a) BPMN representation (b) Petri net representation

Figure 1.2: TravelArrangement composition representation

Motivating example. A computer science researcher working in Paris has had her paper accepted for pre-
sentation at an international conference in Turin, Italy. To attend the conference, she must complete sev-
eral required tasks before traveling. This include registration, travel arrangements, and validation tasks.
For travel arrangements, she is required to use the digital travel management platform of her university,
referred to as TravelArrangement, which offers both housing and transportation services. Figure 1.2(a)
illustrates process-based representation of the TravelArrangement composite service using BPMN, while
Figure 1.2(b) illustrates its graph-based representation using a Petri net.

In this manuscript, some of our approaches model service compositions with process-based represen-
tations, while for others we employ graph-based representations.

Exact vs. Heuristics Optimization Approaches

Combinatorial optimization involves searching for an optimal solution within a finite set of solutions (Schri-
jver [201]). Itis a fundamental concept in computational sciences and many other fields, aiming to find the
best possible solution to a given problem, often under constraints. Exact methods systematically explore
the entire solution space or apply mathematical techniques to ensure optimal solutions. While these meth-
ods work well for small-scale problems, they often become computationally expensive for large instances.
In contrast, heuristic methods are widely used to efficiently find near-optimal (i.e., good high-quality) so-
lutions, even though they do not guarantee global optimality. These methods are particularly useful for
large-scale problems where exact methods become impractical due to their high computational cost.

In service-oriented computing, a decision problem arises concerning the selection of the best compo-
nent services or compositions to meet user functional and non-functional requirements, called QoS-aware
service composition problem. In the literature, various approaches formulate this problem as a combinato-
rial optimization one and propose exact or heuristic methods to resolve it. The first exact solutions were
proposed by Zeng et al. [257], and Bonatti and Festa [35]. Since then, researchers introduced various
approaches navigating from exact solutions to near-optimal heuristics and metaheuristics aiming to im-
prove quality while maintaining efficiency, as reviewed by Jatoth et al. [126] systematic literature review.
The quest for finding high-quality near-optimal solutions has led recent approaches to increasingly adopt
hybrid methods (Gavvala et al. [95], Mistry et al. [174]). While promising, such approaches lie beyond
the scope of this manuscript.

8 Chapitre 1. Introduction

1.2 Research Challenges

To illustrate the research challenges we have addressed, back again to the motivating scenario.

Motivating example. As depicted in Figure 1.2(a), for travel arrangements, the researcher is required
to use TravelArrangement, the digital travel management platform of her university, which offers both
housing and transportation services. For accommodation, she can use HotelBooking to book a room. For
transportation, she can make a reservation using either FlightBooking, TrainBooking, or CarSharing. This
scenario involves two types of control flow structures: parallel and conditional. For each researcher query,
there are three possible composition plans to accomplish her travel arrangements: (T1,T2), (T1,T3), or
(T1,T4).

As shown in Table 1.1, each task is associated with a set of available candidate component services of-
fering the same functionality but differing in their Quality-of-Service (QoS) and transactional properties.
This variation arises from the presence of multiple service providers competing to deliver similar services.
For instance, when booking a hotel room, our researcher can choose between two available services: s1;
provided by HB1 with a response time of 15mn and a cost of 1€; or s12 offered by HB2 with a response
time of 10mn, a cost of 3€, and the additional advantage of compensation.

Table 1.1: Available candidate component services for TravelArrangement

Task Service Response Time Execution Cost Transactional Property = Provider
HotelBooking S11 15mn 1€ - HB1
(T1) S12 10mn 3€ compensatable HB2
FlightBooking Sa21 20mn 1€ - FB1
(T2) S22 10mn 10€ compensatable FB2
So3 8mn 5€ retriable FB3
TrainBooking S31 20mn 5€ - TB1
(T3) S32 18mn 8 - TB2
CarSharing 841 5mn 2€ compensatable CS1
(T4) S42 12mn 15€ - CS2

When multiple providers offer functionally equivalent services, it becomes essential to differentiate
between candidate services, particularly when only one service is needed to fulfill a task. A common
strategy involves selecting the most suitable service based on non-functional attribute values. For example,
in the given scenario, when booking a hotel room, our researcher may prefer service s;; for its lower cost,
or s1o for its compensation feature.

With this context in mind, next, we summarize the research issues and challenges that need to be dealt
with while building non-functional based compositions in service-oriented systems:

o RC1I- Optimality and Multi-criteria handling: services must be selected based on their non-functional
properties such as QoS attributes. For instance, in our motivating scenario, if the researcher specifies
cost optimization as requirement in her query, the plan (T1,T2) will be picked for travel arrange-
ments with services s1; and sy, as the best composition since it offers the less cost. However, each
service advertises several QoS attributes, some of which may be conflicting: some services might
have low response times but are costly, while others may be cheaper but slower (e.g., s32 versus sz,
S41 versus s42). In this case, the challenge lies in finding an optimal composition that reduces costs
while maintaining performance and efficiency. This challenge arises because trade-offs between QoS
attributes are often necessary, making it difficult to find an optimal composition of services that sat-
isfies all constraints and requirements. Service selection and composition optimization is inherently
a multi-criteria multi-objective problem.

o RC2- Computational Complexity: as the number of available services increases, the number of possi-
ble service combinations grows exponentially. Consider a process with n tasks, where m different

1.2 Research Challenges 9

services are available for each task, then the total number of possible compositions is m™ (e.g., with
6 tasks and 10 candidate services per task, the total number of compositions is 1.000.000). Finding
the best combination is NP-hard, meaning that an exhaustive search approach quickly becomes com-
putationally impractical. To address this challenge, heuristic algorithms are necessary to efficiently
identify near-optimal service compositions within a reasonable timeframe.

o RC3- Atomicity and Consistency: service composition involves multiple component services often ex-
ecuting concurrently within a distributed environment. These concurrently running services may
access or modify shared data, making consistency a key challenge. Ensuring that the operations per-
formed by one component service remain consistent with the states of other services is crucial for
reliable execution. For example, consider a scenario in which our researcher uses TravelArrangement
tobook both a flight and a hotel room for a five-day trip, with a total budget of 1000€ and an objective
to optimize the execution cost. When starting the booking process, she expects all reservations to be
completed successfully. The process is initiated using services s1; and sg;, each composed of three
sequential operations: making a reservation, checking the budget, and proceeding with payment.
Both services execute concurrently and independently complete their budget checks, each confirm-
ing the full budget of 1000€. As a result, s1; proceeds to reserve a hotel room for 700€, while s2;
attempts to purchase a flight costing 500€. This results in a budget overrun of 200€. To restore con-
sistency, the researcher would likely need to cancel one or both of the reservations. Doing so may
require her contacting customer support, potentially incurring cancellation fees and resulting in ad-
ditional effort and frustration. This situation not only leads to a poor user experience but may also
damage the reputation of service providers. To avoid this, transactional guarantees are essential in
service composition. A transactional composite service ensures that all component services either
complete successfully or are fully rolled back or compensated, maintaining system consistency and
data integrity. For example, in a transactional composition involving services s and sq3, if an in-
consistency occurs during the execution of sq3 (e.g., flight payment), then hotel reservation in s12
can be automatically compensated, avoiding incomplete reservation.

e RC4- Recovery from failures: component services often run in distributed and unreliable networks
where failures are common. If one service fails unexpectedly, the entire composition may be left
in an incomplete or inconsistent state, providing users with only partial results. During composite
service execution, when a component service fails, the system should be able to handle and re-
cover from the failure. Recovery can be implemented using two strategies: backward recovery, and
forward recovery. Backward recovery use transactional principles, particularly the all-or-nothing
semantics. It restores the system to a previously correct state by rolling back changes made after
the occurrence of a failure. In contrast, forward recovery aims to transition the system into a correct
state. It may substitute failed services to enable the composition to continue functioning. For service
composition, both strategies can be combined in two ways: if a failed service cannot be retried and
no suitable alternative exists, the service execution is aborted, and all completed services are com-
pensated. Alternatively, failed services are first compensated, the system rolls back to a consistent
state, and execution resumes using alternative tasks. For example, consider the scenario in which
our researcher uses HotelBooking service s12 and FlightBooking service so3. If FlightBooking service
593 fails after the hotel room has already been purchased, our researcher will face an issue: she has
paid for a room that she can no longer use, as her flight ticket booking failed. With a proper recovery
approach, the flight reservation could succeed (service s23 retried), or an alternative solution could
be offered (switch to service s32), or flight reservation be automatically canceled (rolled back) and
hotel reservation be compensated.

o RC5- Multi-dimensional Trust: after securing accommodation and purchasing a transport ticket, our
researcher must submit a travel request for approval by her department director. The request may
either be approved or returned with comments for revision. Only after obtaining approval is she
authorized to attend the conference. Consider a scenario where the department director does not
approve the researcher’s trip because flying to Turin violates the institution’s policy on reducing
CO2 emissions. Instead, the director recommends traveling by train or car. Suppose the researcher
prefers to travel by car and considers using a CarSharing service. She must choose between two ser-

10 Chapitre 1. Introduction

vices: s4; provided by C'S1, and s42 offered by C'S2. CarSharing services often rely on individual or
community drivers offering their own vehicles, this implies significant variability in service qual-
ity such as compliance with safety standards, and guarantees for driver punctuality. These factors
introduces a new challenge for service composition: how to select a trustworthy provider offering
a good service?. To make an informed choice between C'S1 with service s4; and C'S2 with service
542, our researcher would probably like to consider whether the CarSharing provider is popular and
well-known in her community, whether the driver is reliable, and whether past passengers reported
positive experiences. She would likely prefer the CarSharing provider she perceives as more trust-
worthy, with reliable and well-rated driver. She might even prefer to rely on a recommendation from
a (Italian) colleague who has previous passenger experience with either s41 or s4s.

1.3 Overview of Contributions

The research activities presented in this manuscript, summarized in Table 1.2 and Figure 1.3, are articu-
lated along three complementary research lines.

Firstly, being interested in understanding precisely the foundations of service-oriented systems, we
consider service selection and composition as a central concept in the first set of contributions. The pri-
mary goal was to investigate various quality attributes and optimization techniques in service selection
and composition, addressing several research challenges outlined earlier in Section 1.2. In a first line of
work, El Haddad et al. [78, 80]", we developed heuristic methods for service selection, aiming to achieve
global transactional correctness while maintaining locally (i.e., at component services level) optimal QoS.
These contributions responded to the need for efficient service selection where global transaction prop-
erties such as atomicity, consistency, and isolation must be preserved. After that, we extended our work
to heuristic-based service composition in Blanco et al. [34], and Cardinale et al. [47, 48]. In this line of
work, we used meta-heuristic search solutions that simultaneously considered functional requirements,
QoS constraints, and transactional properties. Building on this foundation, and acknowledging that ex-
act methods can guarantee globally optimal solutions, we then developed exact optimization techniques
for service selection problem. In El Haddad et al. [82], we introduced fairness objective to ensure eq-
uitable QoS-based service selection among users. This shift also motivated a deeper theoretical investi-
gation into the complexity of the service composition problem. In Abu-Khzam et al. [3], we established
formal complexity results and provided corresponding proofs. Notably, all previous approaches, both
heuristic-based and exact-based, treated services as black boxes, abstracting away their internal behavior
specification. To address this limitation, and with a solid foundation in exact optimization techniques, we
proposed an exact-based approach for behavioral service composition, incorporating both transactional
properties and QoS metrics. This line of work, detailed in Gamez et al. [92, 93], allowed us to consider
not only the non-functional specification but also behavioral specifications of services.

Secondly, in our pursuit to enhance the reliability of service compositions, and acknowledging that fail-
ures may occur during service execution, it becomes essential to consider effective failure recovery strategies.
Within this line of research, our goal was to explore recovery mechanisms that ensure correct and de-
pendable execution of composite services, particularly by leveraging the transactional properties of their
component services. As a foundational step, in Cardinale et al. [50], we introduced a hybrid forward and
backward recovery mechanism using Coloured Petri Nets. This approach supports forward recovery via
re-execution or substitution of failed services, and backward recovery through compensation-based roll-
back to a previously consistent state, all while preserving global transactional semantics. To address the
limitations of strict atomicity, in Cardinale et al. [51], we proposed a fuzzy atomicity model combining
transactional guarantees with checkpointing. This model relaxes the traditional all-or-nothing principle to
amore flexible “fuzzy all-something-or-(almost)nothing” property, better suited to partial successful exe-
cutions. Finally, in Cardinale et al. et al. [52], we extended this model to introduce greater expressiveness
and user-centric control. In this work, users can specify acceptable outcomes based on their utility, and the
system can adapt recovery policies dynamically based on runtime state of composite service execution.

Thirdly, given that service composition often involve discovering and invoking services from unknown
or unverified third-party providers, trust emerges as a crucial non-functional characteristic to consider.

IReferences to papers I co-authored appear in blue (e.g., Gamez et al. [93] is a self-citation), while all others are in black.

1.3 Overview of Contributions 11

Table 1.2: Contributions - lecture grid

‘ Contributions ‘ Quality Metrics ‘ Optimization ‘ Research challenges Chapters ‘ Fig. 1.3
[78,80] QoS & TP Heuristic RC2, RC3 (Service Selection) Chapter 3 | (AJ
[34, 47, 48] QoS & TP Heuristic RC2, RC3 (Service Composition) Chapter 3 | (B
[82] QoS Exact RC1 (Fair Service Selection) Chapter 3 | {(C)
[3] QoS Exact RC1 (Service Composition Complexity) Chapter 3 | (D)
[92,93] QoS & TP Exact RC1, RC3 (Behavioral Service Composition) Chapter 3 (E)
[50] QoS & TP Heuristic RC3, RC4 (Forward and Backward Recovery) Chapter 4
[51,52] TP Heuristic RC3, RC4 (Semantic Recovery and Checkpoint- | Chapter 4

ing)
[152,153, 155,154, 156] | QoS & Trust Heuristic RC5 (Service Selection) Chapter 5
[157] QoS & Trust Exact RC5 (Service Composition) Chapter 5

Steps

Recovery @ e

Composition @

Selection / Heuristic

H NFP
" QoS
and
Trust

Exact

/

Optimization

Figure 1.3: My contributions in service-oriented systems

Proposing trust-based service selection and composition is the main goal of our third line of research. Specifi-
cally, we propose a multi-agent approach grounded in trust and social network interactions. In a first line
of work, Louati et al. [152, 153, 155, 154, 156], we enhanced service discovery and selection by introducing
a trust model comprising four dimensions: societal, expertise, recommendation, and cooperation. The
social dimension assesses whether a service provider is worth engaging with prior to service use. The
expertise dimension evaluates the reliability and expected behavior of the service itself. The recommen-
dation dimension determines the trustworthiness of agents offering recommendations and the credibility
of those recommendations. The cooperation dimension enables agents to make informed decisions about
potential partners in a service composition. Building on this foundation, in Louati et al. [157], we ad-
dressed the service composition problem through a trust-based dynamic coalition formation process. In
this model, agents, each equipped with a set of services and their advertised QoS attributes, cooperate to
fulfill the requester query based on a decentralized decision-making process guided by trust.

All the contributions of the research lines presented above will be detailed in Chapter 3, Chapter 4 and
Chapter 5 together with a corresponding state of the art.

12 Chapitre 1. Introduction

1.4 Outline

This manuscript is divided into six chapters, of which the remaining ones are organized as follows:

In Chapter 2, we present necessary background knowledge that form the foundation of our research
work, including definitions of user requirements, component service functional and non-functional spec-
ifications, and composite service specifications used in our approaches.

In Chapter 3, we present our contributions on efficiency and consistency in service selection and com-
position. We propose both heuristic and exact approaches for transactional-and QoS-based selection and
composition. In addition, we discuss the theoretical complexity of QoS-aware service selection and be-
havioral service composition, and briefly summarize additional research work we had the opportunity to
explore.

In Chapter 4, we present our contributions on reliability and failure recovery in service composition.
We introduce forward and backward recovery through transactional properties of services. Then we de-
fine a fuzzy atomicity model to integrate transactional properties with a checkpointing mechanism. Be-
side, we briefly summarize a research work on concurrency control of composite service execution that
we had the opportunity to study.

In Chapter 5, we present our contributions to trust-based service discovery, selection, and composi-
tion. For service discovery and selection, we introduce a trustworthiness evaluation of providers and their
services, grounded in sociability, expertise, and recommendations, while for service composition, we pro-
pose a trust-based coalition formation approach.

In Chapter 6, we conclude the manuscript by summarising our contributions and presenting the broad
outlines of our future research plan on large-scale service systems, with some perspectives.

CHAPTER

CoONCEPTS AND DEFINITIONS

In this chapter, we provide an overview of the key concepts that form the foundation for our research work. We
introduce definitions related to user requirements, component service functional and non-functional specifications,
and composite service specification used in our approaches.

2.1 User Requirements

In all our approaches, user functional and non-functional requirements are formalized as a Query. In
our approaches that incorporate QoS and transactional properties (detailed in Chapter 3 and Chapter 4),
functional requirements are specified either through explicit input-output pairs provided by the user or as
a predefined workflow. Non-functional requirements are always captured by indicating a desired global
transactional property and by assigning user-defined weights to various QoS attributes, as illustrated
below.

Definition 2.1.1. Let Onto4 be the integrated ontology. A Query @ is a 4-tuple (Ig,Og, W, Tg), where
Ig = {i | i € Ontoa} is the set input attribute whose values are provided by the user, Og = {o | 0 €
Onto,} is the set of output attributes whose values has to be produced by the system, W = {(w;, ¢:) |
w; € [0,1] with), w; = 1 and ¢; is a QoS criterion} is the set of weights for QoS attributes, and T, (or
R() is the required global transactional property: Tg € {Ty,T1}. If Tg = Tp, the system guarantees that
a semantic recovery can be done by the user. If Ty = 77, the system does not guarantee the result can be
compensated. In both cases, if the execution is not successful, nothing is changed on the system.

When functional requirements are expressed as workflows, we adopt Yet Another Workflow Language
(YAWL) (Van Der Aalst and Ter Hofstede [227]) as a modeling language. However, any other expressive
workflow language could have been employed. Figure 2.1 shows the YAWL symbols, while Figure 2.2
common control-flow patterns: sequence, parallel split (AND-split), exclusive choice(XOR-split), syn-
chronization (AND-join) and simple merge (XOR-join). For example, Figure 2.2(a) shows a sequential
pattern between activities (i.e.tasks) A; and As. If service s, is assigned to A; and s, to As, the resulting
composite service is denoted as (s1; s2) where the semicolon (;) indicates that s; executes before s,. The
parallel pattern (Figure 2.2(b)), with s; and s, respectively assigned to A; and A;, produces the com-
posite service (s1//s2) representing concurrent execution. For exclusive choice pattern (Figure 2.2(c)),
the execution corresponds to one of the possible branches. Assigning s; to A; and sy to A; yields the
composite service (si | s2), indicating that either s; or s, is executed. For more details, see Van der Aalst
et al. [226] for a comprehensive characterization of workflow constructs, and Jaeger et al. [122] for an
in-depth discussion of control-flow patterns relevant to service composition.

14 Chapitre 2. Concepts and Definitions

» () I
—> —>
—> —
Input Ouput AND-split AND-join
[I
—> —>
—> —
Task Task composite XOR-split XOR-join

Figure 2.1: Symbols used in YAWL

Al Al
Al —> A2
/'
AND-split T A2 AND-join XOR-split T A2 XOR-join
(a) Sequential pattern (b) AND-split and AND-join patterns (c) XOR-split and XOR-join patterns

Figure 2.2: Workflow patterns

In the trust-based approaches presented in Chapter 5, users specify their functional requirements by
indicating either a set of required services or a set of desired functionalities. Non-functional requirements
are expressed through preferences over relationship types and the definition of trust threshold values, as
illustrated below.

Definition 2.1.2. A query Q is a 5-uplet (F, U, «, 5, i) where F is a set of required services {s1, s2, ..., si}
or functionalities {f1, f2, ..., fi}, U : R +]0,1] is an utility function expressing user’s preferences over
relationship types in the social network, o € [0, 1] is a trust in sociability threshold, 8 € [0, 1] is a trust in
recommendation threshold and ¢ € [0, 1] is a trust in expertise threshold.

Additionally, in these approaches, each individual user is assigned a self-interested agent and, an edge
between two users represent a symmetric social relationship between them. This induce a multi-relation
social network modeled by a graph defined as below.

Definition 2.1.3. Given a set V' = {ai,as, ..., a,} of agents and a set R of types of symmetric rela-
tionships with R = {Ri, R», ..., R}, a multi-relation social network (MRSN) is a connected graph
G =< V,E1,Es, ..., E. >where E; CV x VVi € {1, ..., r} is the set of edges w.r.t the i-th relation-
ship and Vi # ¢/, E; N E; = (. Let p : E — R be a function that links edges to the relationship they
represent (i.e., an edge (ax,a;) € E; represents a social relationship of type R; between ay, and a;).

2.2 Component Service Specification

A comprehensive service description includes its functionality, inputs, outputs, and associated non-functional
attributes. In the following, we first present our service functional description model, followed by our
specifications for transactional, QoS, and trust attributes.

Functional Specification

In all our approaches, a service s; is syntactically described by its functionality, its set of inputs needed to
invoke the service, and its set of outputs that are produced by the service execution.

2.2 Component Service Specification 15

Definition 2.2.1. A service s is a n-uplet (in, out, f, ¢*, ..., q%) where in is a set of inputs required to use
the service, out is a set of outputs provided at the completion of the service, f is a functionality describing
the provided capacity, and ¢', . . ., ¢¢ are the advertised values of the d non-functional criteria.

Transactional Properties

In our approaches that incorporate transactional properties (detailed in Chapter 3 and Chapter 4), we
identified three key transactional properties of services, namely pivot, compensatable and retriable, which
have also been widely adopted by other researchers, including Bhiri et al. [30], Gaaloul et al. [89], Li et
al. [139], Maamar et al. [161], Montagut et al. [177], Zhao et al. [263].

Definition 2.2.2. A service is pivot (p) if once it successfully completes, its effects remains forever and
cannot be semantically undone. If it fails it has no effect at all. A completed pivot service cannot be rolled
back.

Definition 2.2.3. A service s is compensatable (c) if it exists another service s’, or compensation policies,
which can semantically undo the execution of s.

Definition 2.2.4. A service is retriable (r) if it guarantees a successfully termination after a finite number
of invocations.

The retriable property is typically not used in isolation; rather, it is combined with other properties to
define two transactional types: pivot retriable (pr) (equivalent to retriable) and compensatable retriable (cr).
Figure 2.3 presents state diagrams illustrating these transactional properties, with final states represented
by dotted lines. These properties are adaptations of the transactional properties originally identified by
Mehrotra et al. [169] for MultiDatabase Systems, and they can be incorporated into the WSDL interface or
the OWL-S profile of a service, as demonstrated in the work of Bhiri et al. [30] and Montagut et al. [177].

QnitiaD—'CaCtive —={complete } QnitiaD—(active —{complete)

’ S, . N ’ S, . N

__

(a) Pivot service (b) Compensatable service

. . /~ ™
intla%ctlve —»(\complete/;
N\, /
Ko N -
i abort } fail
N\ ,'

(c) Pivot Retriable service (d) Compensatable Retriable service

Figure 2.3: State diagrams of service transactional properties

16 Chapitre 2. Concepts and Definitions

Quality-of-Service Attributes

In our approaches that incorporate QoS properties (detailed in Chapter 3 and Chapter 4), we focused on
the following five generic criteria for a component service s:

o Execution price (gep(s)): the fee that a requester must pay to invoke the service s,

o Execution duration (g.q(s)): the expected time delay between invoking s and receiving the results,

Reputation (¢, (s)): a measure of the trustworthiness of s, typically computed as the average ranking
provided by end users,

Successful execution rate (g (s)): the probability that s will correctly respond to the user’s request,

Availability (g, (s)): the probability that s is accessible and operational.

In our trust-based approaches, we considered the following three QoS attributes for a service s;;:

e Specialization (Sp(s;ji)): is the percentage of successful use of an agent’s service s;; compared to the
other services it offers. It is defined as the ratio between the number of times that a service s;; has
been successfully completed (Maaradji et al. [163]) and the total number of successful executions
of the agent a; regardless of the used service.

Nbsuccess (S 'l)
J
m;
t:Jl Nbsuccess(sjt)
where Nbgyccess(s51) is the number of successful executions of s;; and m; is the number of services

offered by agent a;. This means that the more the service s;; is sought for in the social network the
more a; is recognized as an expert in this field.

Sp(sji) = (2.1)

o Reliability (Re(sj;)): is the probability that a service s;; is operational at the time of invocation. It
is computed as the rate between the number of successful executions Nbgyccess(s;:) and the total
number of functionality invocations Nb;,u0c(S;1)-

Nbsuccess (Sjl)

Re(sj;) = Nbimooe(551)
invoc\°j

(2.2)

o Experience rating (Eval(ag, s;1)): is the rating of the service realization quality. After the execution
of a service sj;, an agent aj, gives an evaluation v € [0, 1] of this execution reflecting its experience
feedback as a customer of this service. Unlike the previous attributes, the evaluation of this attribute
results from a subjective perception. Let Eval(ay, s;;) be the average of the experience ratings of s;;
for n uses by ay,.

22:1 Vz

- (2.3)

Eval(ak, sj1) =

Trust Attribute

In our trust-based approaches detailed in Chapter 5, we define trust in expertise ET'(ax, a;, s;;) that an
agent a;, has in a service s;; offered by an agent a; as the aggregation of three above QoS attributes (Lalanne
etal. [134]). It is computed as follows:

ET(ak,a;,s51) = Sp(sj1) x Re(s;;) x Eval(ag,s;;) (24)

2.3 Composite Service Specification

Fulfilling a user query may require combining several services, resulting into a composite service. As
described in Chapter 1, we use diagram-based representation to model service composition. In some of
our approaches, we use (coloured) Petri nets to model service compositions, while for others we employ
graph-based representations as illustrated below.

2.3 Composite Service Specification 17

(Coloured) Petri net-based representation

In some of our approaches in Chapter 3 and Chapter 4, we model the service registry using a coloured
Petri net, referred to as a Web Service Dependency Net (WSDN), defined as follows:

Definition 2.3.1. A WSDN is a 4-tuple (A4, S, F, §), where:

e A is a finite non-empty set of places, corresponding to input and output attributes of the services in
the registry such that A C Ontoy;

e S is a finite set of transitions corresponding to the set of services in the registry;

F:(AxS)U(SxA) — {0,1} is a flow relation indicating the presence (1) or the absence (0) of
arcs between places and transitions defined as follows: Vs € S, (3a € A| F(a,s) = 1) < (ais an
input attribute of s) and Vs € S,(Ja € A | F(s,a) = 1) < (a is an output attribute of s);

e ¢ is a color function such that ¢ : C4 U Cs with: Ca : A — X4, a color function such that £, =
{I,a,ar,c,cr} representing, for a € A, either the transactional property of the composite service that
can produce it or the user input (1), and Cs : S — 5, a color function such that X5 = {p, pr, a, ar, c, cr}
representing the transactional property of s € S.

Note that, the transactional properties of a composite service {a, ar, ¢, cr} are defined below.

Definition 2.3.2. A marked Web Service Dependency Net is a pair (W.SDN, M), where M is a function
which assigns tokens (values) to places such that Va € 4, M(a) C {0, Bag(X4)}, where Bag corresponds
to a set which can contain several occurrences of the same element.

Definition 2.3.3. The initial marking M depends on the user query @ and is defined as: Va € (AN Ig),
MQ(CL) = {I} and Va (S (A — IQ), MQ(G) = @

According to coloured Petri net notation, for each z € (AU S), (*z) = {y € AUS : F(y,z) = 1} is the set
of its predecessors, and (z*) = {y € AU S : F(z,y) = 1} is the set of its successors.

Definition 2.3.4. A marking M enables a transition s iff all its input places contain a token (Vz € (
(x) # 0) and at least one of the following conditions is verified:
Va € A, M(a) € {I1,0})
(s) = cr)
s(s) € {pr,ar}) A [¥a € (A="3), M(a) € {0, Bag({I, ar, er})}]
s(s) = o) A Va € (A=*s), M(a) € {0, Bag({I,c,cr})}] A [Va € (*s), M(x) € Bag({I, c,cr})]
Cs(s) € {p,a}) A [Va € (A="s), M(a) € {0, Bag({1,cr})}] A [Va € (*s), M(x) € Bag({I, ¢, cr})]

S)/
M
L (
2. (Cs
3. (C
4.(C
5. (

Definition 2.3.5. Let (W SDN,M) be a marked WSDN. Its color is: Cys € {I,a,ar,c,cr}. Cy = I, when no
transition has been fired (i.e., when no WS has been selected and there is no resulting CWS). Otherwise,
Cus represents the aggregated TP of the resulting CWS and is updated each time a transition is fired.

Definition 2.3.6. The firing of a fireable transition s for a marking M defines a new marking M’, denoted
as M > M’, such that :

18 Chapitre 2. Concepts and Definitions

1. Tokens are added to the output places of s depending on the color of s and on the color of the tokens
contained by the input places of s, according to the following rules:
if (3 € (°s) |a € M(z)), thenVy € (s*), M'(y) + M'(y) U {a}
elseif (Jz € (°s) | ar € M(x)), thenVy € (s*), M'(y) + M’ (y) U {ar}
elseif [(3z € (°s) | c € M(z)) A (Cs(s) € {p,pr,a,ar})],
thenVy € (s*), M'(y) « M'(y) U{a}
elseif [(3z € (°s) | c € M(x)) A (Cs(s) € {c,cr})],
thenVy € (s*), M'(y) « M'(y) U{c}
else /*in this case: Va € (°s), M (x) € Bag({I,cr})*/
Yy € (s*), M'(y) « (M'(y) U Cs(s)) if Cs(s) € {a,ar,c,cr},
M'(y) + (M (y) U {a}) if Cs(s) = p, and M (y) M'(y) U {ar} if Cs(s) = pr

2. Tokens are deleted from input places of s, if they do not belong to Og:
Vo € (°s — Oq), M(z) < 0,

3. Color Cyy- of the resulting (WSDN, M') (see Definition 2.3.5) is updated, according to the following
rules:
if (Car € {I,cr}) and Cs(s) = pthenCypr <+ a
elseif (Cas € {I,cr}) and Cs(s) = pr then Cpyr < ar
elseif (Cas € {I,cr}) and Cs(s) € {a,ar,c,cr} then Cppr + Cs(s)
elseif (Cas = ¢}) and Cs(s) € {p,pr,a,ar} thenCpyr < a
else Cpyr < Cur

Definition 2.3.7. A firing sequence o = {s1,...,sn | si € S}isa correct sequence of fired transitions starting
from My, iff there are markings Mj, ..., M,, such that Mo = My ... M,_1 2% M,; this is denoted as Mg % M,,.

Definition 2.3.8. Let Oy be the set of the produced attributes by a firing sequence o such that: O =
{a € (Ussyjs,e0) | Mg = M, }. A transition s is said to be a cut-off transition iff its firing does not change
the set of the already produced attributes (i.e., iff: Mg % M, = M,11 and O, = Ou,).

Graph-based representation

A composite service, C'Sq, responds to a query (Q = (I, Og) by combining a set of services to be executed
sequentially or in parallel according to an execution flow imposed by data or control dependencies, to
obtain O from Ig. In some of our approaches of Chapter 4, the execution flow of such composite service
is represented by a graph as proposed in Angarita et al. [15] and described below.

Definition 2.3.9. A composite service graph, denoted as G = (VU IoUOq, A), is a directed acyclic graph
with the following considerations:

e Nodes in V represent services, such that V = {s;,7 = 1..m} and s; is a component service;

e 1,0, are respectively input and output user parameters expressed in query). Ig are the initial
nodes of G and O are the final nodes of G;

o Arcs (ipj,s;) in A, with ip; € Ig and s; € V, denote the input parameters for a service s; € V such
that ip; € I,;

2.3 Composite Service Specification 19

o Arcs (s;,0p;) in A, with s; € V and op; € O, denote the output parameters for a service s; € V
such that op; € Og,;

o Arcs (s;,s;)in A, with s;, s; € V denote the execution flow between two services s; and s; such that
O, NI, #0.

In composite service graph, arcs between services represent execution flow, defined by data or control
flow relationships. A data flow exists when the output of one service serves as input to another. A control
flow exists when execution order requires one service to wait for the completion of another. Thus, an
execution flow between two services indicates either data dependency or control dependency.

Transactional Property

The transactional property of a composite service depend on the transactional properties of its component
services. To address this, we extended the transactional properties of component services to composite
services in El Haddad et al. [78], defining atomic, compensatable, and retriable composite services, as out-
lined in the following definitions:

Definition 2.3.10. A composite service is atomic if once all its component services complete successfully,
their effect remains forever and cannot be semantically undone. On the other hand, if one component
service does not complete successfully, then all previously successful component services have to be com-
pensated.

Definition 2.3.11. A composite service is compensatable (c) if all its component services are compensat-
able.

Definition 2.3.12. An atomic or a compensatable composite service is retriable (r) if all its components
are retriable.

Definition 2.3.13. A transactional composite service is a composite service whose transactional behavioral
property is in {a, ar, ¢, cr}.

To ensure these transactional properties for a composite service, the transactional properties of its
component services must respect several rules defined in Table 2.1. These rules impose restrictions on
sequential and parallel executions of services.

Table 2.1: Rules for transactional composite services

Transactional property
of a service

Sequential compatibility

Parallel compatibility

D, a pr,ar,cr (rule 1) cr (rule 2)

pr, ar pr,ar, cr (rule 3) pr,ar, cr (rule 4)

c p,pr,a,ar, c,cr (rule 5) ¢, er (rule 6)

cr p,prya,ar,c,cr (rule7) | p,pr,a,ar,c,cr (rule 8)

20 Chapitre 2. Concepts and Definitions

Quality-of-Service

A composite service C'S has the same quality properties as a component service, i.e., execution price,
execution duration, reputation, successful execution rate, and availability. The QoS of a composite service
is evaluated by using the aggregation functions defined in Table 2.2. Activities in all execution paths
between AND-split and AND-join are considered in the aggregation functions. While, activities in only
one execution path between XOR-split and XOR-join constructs are considered.

Table 2.2: Aggregation functions for QoS criteria

Criteria ‘ Aggregation function ‘
Price qep(CS) = 3071 gep(si)
Duration qea(CS) = Y01 qea(si)
Reputation | ¢,(CS) = 13" ¢.(s;)
Success rate | qs-(CS) =[]/, qsr(s:)
Availability | ¢,(CS) =[—; ¢a(s:)

Trust in Expertise

In our approach in Louati et al. [157], detailed in Chapter 5, service composition is performed by self-
interested agents equipped with a set of services along with their QoS attribute values. Agents cooperate
in a coalition formation to collectively provide multiple composite services that meet the complex user
query. Trust in expertise, denoted Exp,[z], for a given coalition c; is defined below as the average sum of
the expertise of its members.

Eap,[2] = Zmee: PT(0) (2.5)

|c|

Recall that trust in expertise of a member (i.e., agent a;) is a score established from the QoS values of
its offered service(s) in the underlying coalition computed following Equation 2.4.

CHAPTER

ErriciENCcY AND CONSISTENCY IN SERVICE SELECTION AND
CoMPOSITION

In this chapter, we address the issues of ensuring efficient and consistent execution of service compositions. Ensuring
efficiency involves selecting and composing services that optimize key Quality-of-Service attributes such as execu-
tion time, cost, and availability. Achieving consistency involves utilizing transactional properties to preserve data
integrity, and prevent partial or conflicting updates during concurrent execution of services. As such, we proposed
both heuristic and exact approaches for service selection and composition that integrate QoS and transactional prop-
erties. Our contributions evolve from early heuristic methods for selection and composition to more advanced exact
optimization techniques capable of handling both quantitative and qualitative attributes. This chapter highlights
the contributions presented in EI Haddad et al. [78, 80], Blanco et al. [34], Cardinale et al. [47, 48], El Haddad
et al. [82], Abu-Khzam et al. [3], and Gamez et al. [92, 93]. Nevertheless, we conclude the chapter with a brief
overview of additional research work that we had the opportunity to study.

3.1 Motivations

As highlighted in the Introduction (Chapter 1), service composition is a key aspect of service-oriented
systems, combining services with different functional, behavioral, and non-functional properties to build
more complex ones. Since multiple providers may offer functionally equivalent services, non-functional
properties serve as the main criterion for selecting a single candidate per task. Bearing this in mind, ser-
vice composition must address efficiency and consistency challenges. Efficiency ensures optimized per-
formance and cost-effectiveness, while consistency guarantees data integrity and correctness of execution
results across component services.

Efficiency is a fundamental concern in service composition.For instance, by minimizing latency, effi-
cient compositions enhance the system responsiveness; and by maximizing resource utilization, they re-
duce infrastructure load, enabling the system to support a greater number of concurrent users. To achieve
efficiency, Quality-of-Service (QoS) non-functional properties such as execution time, execution price, and
availability are considered. This results in what is known as the QoS-aware service selection and com-
position problem (Zeng et al. [257]), where the goal is to choose the best services or compositions that
meet user’s QoS constraints. However, these constraints often conflict, requiring trade-offs among QoS
attributes. As aresult, this problem is recognized as a multi-criteria multi-objective optimization problem.
To address it, the literature offers both exact and heuristics approaches.

Consistency is another cornerstone of successful service composition, ensuring that concurrently ex-
ecuting services preserve data integrity and avoid partial updates that leave the composition in an in-
valid state. For instance, if a composite service first charges a customer and then books a ticket, consis-
tency mechanisms must ensure that the ticket is not booked if the payment fails. To enforce consistency,

22 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

Requirements HotelBooking
(T1) ﬁ

Functional
input fromCity: Paris, toCity:Turin,
FlightBooking <:> 'O
(T2)

— BPMIN Notation —
O stan
TrainBooking
(T3) —>® O End
O Service Task

checkIn:26/06/2026, checkOut:01/07/2026,
—» Sequence flow

guestNumber:1, customerName:myname,
email : me@univ.fr,

cardNumber:Visal23, expiryDate:03/27
output Hotel Voucher, Flight e-ticket

Non-functional
preferences

Travel Arragement Workflow

CompeiEaEE CarSharing <-|> Parallel gateway
weight(time)= 0.5, weight(cost) = 0.5 (T4)
objectif Minimize Time and Cost ® Exclusive gateway

Figure 3.1: TravelArrangement booking motivating example

Table 3.1: Available candidate component services for TravelArrangement

Task Service Response Time Execution Cost Transactional Property Provider
HotelBooking S11 15mn 1€ = HB1
(T1) S12 10mn 3€ compensatable HB2
FlightBooking S21 20mn 1€ = FB1
(T2) S22 10mn 10€ compensatable FB2
823 8mn 5€ retriable FB3
TrainBooking S31 20mn 5€ - TB1
(T3) S32 18mn 8€ - TB2
CarSharing 541 5mn 2 compensatable CS1
(T4) S42 12mn 15€ - CS2

transactional properties of services are considered during composition to help supporting ACID guaran-
tees (Gray [103]): Atomicity (all-or-nothing execution), Consistency (valid state transitions), Isolation
(no interference from concurrent services), and Durability (persistence of committed results). Thus,
choosing transactional services helps maintain valid state transitions, support concurrent execution safely,
and prevent partial or conflicting updates, thus preserving data integrity.

To illustrate the need to address both challenges, let us return to our motivating scenario.

Motivating example. Asshown in Figure 3.1, consider the case where the researcher specifies, as part of
her functional requirements, booking a hotel room and traveling to Turin by plane. She further indicates
cost optimization and compensatable transactional preference as non-functional requirements. Under
these conditions, the plan (T1,T2) is selected for her travel arrangements.

X If only efficiency is considered (weight(time) = 0.0, weight(cost) = 1.0), services s11 and sg; form
the optimal composition, with the lowest cost of 2€and an execution time of 20 minutes, since they can
run concurrently. However, this may cause integrity issues if, for example, no hotel rooms are available
in Turin or the flight cost is too expensive.

X Conversely, if only consistency is taken into account (weight(time) = 0.0, weight(cost) = 0.0),
services s12 and sgo are chosen for their strong transactional guarantees, though at a higher cost of 13€and
a shorter execution time of 10 minutes.

v When efficiency and consistency are considered together, a compromise may be selected—for in-
stance, services s12 and s»3, which balance cost (8€), execution time (18 minutes), and some transactional
guarantees.

Thus, both transactional and QoS properties should be considered during service selection and com-
position problem. Balancing QoS and transactional aspects is vital to creating efficient and robust service
compositions (Liu et al. [144]). However, in the literature, the problem was generally addressed either
from the QoS side (Jaeger et al. [122], Menasce [172], Wu et al. [237], Zeng et al. [257], Zhang et al. [259])

3.2 State-of-the-art and Contributions 23

or from the transactional side (Bhiri et al. [30, 31], Li et al. [139], Montagut et al. [177], Portilla et al. [194]
separately.

The rest of the chapter is organized as follows. In Section 3.2, we outline state-of-the-art research
work for handling transactional properties and optimizing QoS associated with service selection and
composition and summarizes our contributions in this research line. In Section 3.3, we propose heuristic
transactional-and QoS-based approaches, while in Section 3.4, we propose exact transactional-and QoS-
based approaches. In Section 3.5, we overview additional research work that we had the opportunity to
study. In the last section, we conclude the chapter by summarizing our findings.

3.2 State-of-the-art and Contributions

The research on service selection and composition has undergone significant evolution over the past two
decades, progressively addressing the challenges of efficiency and consistency.

QoS-based Service Selection and Composition. In the early 2000s, research on service-oriented systems
focused on optimizing QoS attributes due to the growing number of functionally similar services. Early
work by Menasce [172] introduced probabilistic models for QoS attributes such as cost and execution
time, while Jaeger et al. [122] proposed pattern-based QoS aggregation to ensure composite services meet
required QoS levels. Later, the QoS-aware service selection and composition problem was extensively
studied and commonly formulated as a combinatorial optimization problem (Alrifai et al. [11], Ardagna et
al. [16], Bonatti and Festa [35], Schuller et al. [202, 203], Trummer et al. [221], Yu et al. [251], Zeng et
al. [257]), with surveys provided in El Haddad [79], Moghaddam et al. [175], and Strunk et al. [213].
Most studies acknowledged that the problem is NP-hard and equivalent to Multi-Dimension Multiple-
Choice Knapsack problem (Ardagna et al. [16], Gabrel et al. [90]). Solutions in the literature broadly
fall into two main categories: exact approaches ensuring optimality, and heuristic approaches delivering
near-optimal results with reduced computational cost.

Exact approach foundational work by Zeng et al. [257] formalized service selection as a QoS-aware
optimization problem, introducing a Mixed Integer Programming (MIP) formulation to support global
planning through the decomposition of execution paths. Other influential contributions during this pe-
riod include Alrifai et al. [11], Ardagna et al. [16], Bonatti and Festa [35], Schuller et al. [202, 203], Trum-
mer et al. [221], Yu and Lin [251], who further refined exact models and problem formulations. Bonatti
and Festa [35] proposed a matching-based approach that framed service selection as a compatibility and
preference-driven binding problem. Subsequent work diversified modeling techniques to better capture
workflow structures and constraints. Yu and Lin [251] developed two exact methods based on the Mul-
tiple Choice Knapsack Problem for sequential workflows, and Constrained Shortest Path Problem for
general workflow topologies. Ardagna and Pernici [17] extended the MIP model to incorporate local and
global constraints and cycles handling. Cardellini et al. [46] proposed a Linear Programming (LP) model
for optimizing end-to-end QoS in composite services offered by brokers to multiple users. In parallel,
Schuller et al. [202] addressed both structured and unstructured workflows through Integer Linear Pro-
gramming (ILP). Additionally, Gabrel et al. [90] focused on the complexity of single-criterion scenarios,
offering a refined MIP-based solution, while Trummer et al. [221] exposed computational limits via an
exact exponential time algorithm.

Over time, research shifted toward heuristic and metaheuristic methods to improve scalability while
maintaining solution quality. Genetic algorithms (Canfora et al. [44], Yang et al. [244]), dynamic pro-
gramming heuristics (Wu et al. [237]), and ant colony optimization (Zhang et al. [258]) emerged as prac-
tical alternatives. Canfora et al. [44] proposed a genetic algorithm for QoS-aware workflow re-planning.
Wu et al. [237], proposed a dual-mode approach balancing accuracy and speed, one using dynamic pro-
gramming for highly accurate results at slower selection times and another for good enough results at
faster selection times. Zhang et al. [258] introduced a decomposition strategy with general flow struc-
tures, framing service selection as a multi-objective optimization problem solved via ant colony algo-
rithms. Other contributions include Zeng et al. [257] who proposed both local optimization and global
planning strategies; Kokash [130] who extended the previous work by considering additional factors (e.g.,
service failure probabilities, response times, and execution costs) along with the composite service graph

24 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

structure; and Zhang et al. [259] who integrated global user constraints into service selection. Later on,
Trummer et al.[221] proposed two algorithms: a polynomial-time heuristic without guaranteed error
bounds, and a polynomial-time approximation algorithm offering such guarantees.

Modern approaches increasingly leverage hybrid techniques, combining exact optimization for smaller
instances with heuristic or metaheuristic methods for larger scale instances (Alrifai etal. [10], Ben Mabrouk
et al. [24], Izquierdo et al. [121]). While promising, these approaches fall outside the scope of this
manuscript.

Transactional-based Service Selection and Composition. Concurrently to the emphasis on efficiency,
during the mid to late 2000s, researchers increasingly recognized the critical importance of consistency
and reliability in service compositions. Early contributions, such as Bhiri et al. [30], began to explore
how transactional properties, including compensability and retriability, could be integrated into service
selection to prevent partial executions and maintain system correctness. Authors proposed an algorithm
to validate composite services based on the transactional properties of their components and predefined
Acceptable Termination States (ATSs). Similarly, Montagut et al. [177] used ATSs to guide service se-
lection, incorporating user-defined workflows as functional constraints. However, Liu et al. [146] later
pointed out that specifying all possible ATSs becomes increasingly complex and impractical in large-scale
workflows. To address this scalability issue, alternative approaches have employed transactional rules as
correctness criteria. For instance, Li et al. [139] proposed rules specifying how transactional properties,
such as pivot, retriable, and compensatable services, can be composed based on workflow structure. They
showed that the transactional property of a composite service can be inferred from its components and
the structure of the workflow. Other researchers have extended this line of work by investigating transac-
tional workflows (Bhiri et al. [31], Liu et al. [146]), Advanced Transactional Models (ATM) (Lakhal et
al. [133], Vidyasankar et al. [229]), and graph-based algorithms that capture input-output dependencies
among component services (Brogi et al. [40]).

Transactional- and QoS-based Service Seclection and Composition. The interplay between transac-
tional consistency and QoS optimization began to receive significant attention in the 2010s, giving rise
to research that jointly addressed both concerns. Studies such as those by Mei et al. [170], Wu and
Yang [238], and Liu et al. [147, 150] highlighted how transactional support, especially compensation
mechanisms, can significantly impact QoS metrics, potentially increasing execution costs and latencies.
Mei et al. [170] proposed a method for evaluating the QoS of transactional composite services by mod-
eling compensation costs and identifying dominant QoS metrics based on different execution patterns.
Their approach used paired Petri nets to model normal control flow and reverse flow triggered in case
of compensation. Wu and Yang [238] developed a model to predict the aggregated QoS of composite
services, incorporating compensation costs computed based on the probability of exceptions occurring.
Their algorithm estimates the average QoS for a composition by considering all component services and
their respective compensation actions. Similarly addressing compensation costs, Liu et al. [147] proposed
several algorithms for scheduling transactional composite services composed solely of compensatable ser-
vices. These algorithms produced schedules that account for both temporal and cost constraints, including
time-aware scheduling to preserve atomicity and cost-aware scheduling to minimize overall compensation
costs.

For a classification of transaction-aware service selection and composition approaches, distinguishing
between those based solely on transactional properties and those that integrate both transactional and
QoS considerations, readers can check our survey provided in Cardinale et al. [49]. We evaluated these
approaches using criteria such as the underlying transactional models, control flow strategies, verification
mechanisms, composition phases addressed, and compliance with protocols or standards.

Recent research continues to address efficiency and consistency challenges in dynamic, distributed
environments such as the Cloud, IoT, and Microservices architectures (Awan et al. [20], Cili¢ et al. [65],
Khadir etal. [128], Zhao et al. [262]). Additionally, emerging trends involve incorporating machine learn-
ing techniques to optimize non-functional properties of service compositions under uncertain or rapidly
changing conditions (Hammoum et al. [111], Zhang et al. [260]).

3.2 State-of-the-art and Contributions 25

Steps
Recovery +
[34, 47, 48]
Composition @
. [78, 80]
Selection / Heuristic @ NP
QoS / QoS
/S and /" and

TP / Trust

Exact

Optimization

Figure 3.2: Contributions to Efficiency and Consistency in Service Selection and Composition

Positioning of contributions.

Being interested in understanding precisely the foundations of service-oriented systems, we considered
service selection and composition as a central concept in this set of contributions. Our goal was to investi-
gate various quality attributes and optimization techniques and our contributions reflects exploration of
efficiency and consistency challenges, aligning closely with the major research trajectories observed in the
field over the past two decades.

Our early contributions, El Haddad et al. [80], El Haddad et al. [78] (Section 3.3.1), focused on heuris-
tic approaches for service selection that jointly considered quantitative (QoS) and qualitative (transac-
tional) attributes, situating our work alongside other heuristic and metaheuristic efforts in the literature.
In El Haddad et al. [80], we introduced an approach that integrates transactional and QoS-based service
selection, deriving the transactional behavior of a composite service from its components. Users specify
transactional requirements in terms of risk (acceptance or compensation of results) and QoS preferences
through weights assigned to criteria. In a subsequent study, El Haddad et al. [78], we extended this ap-
proach to support compositions of both elementary and composite services. Our algorithm ensures that
each selected component is locally optimal in terms of QoS while meeting global transactional require-
ments. Unlike methods proposed by Bhiri et al. [30], Montagut et al. [177], and Maamar et al. [161], our
approach avoids component-level termination checks, thereby improving scalability.

Building on this foundation, subsequent contributions expanded in two parallel directions: heuristic
approaches for composition phase considering both attribute types (Blanco et al. [34], Cardinale et al. [47,
48]) (Section 3.3.2), and exact methods for selection focused on quantitative QoS attributes (El Haddad et
al. [82]) (Section 3.4.1).

In Cardinale et al. [47], we addressed the composition problem by combining search meta-heuristics
and Coloured Petri Nets (CPN)to satisfy both functional and transactional requirements. Functional
needs were defined by input/output attributes, while transactional needs were specified as risk levels. By
extending CPN models to include transactional properties and adapting Petri Net unfolding for best-first
search, we ensured that compositions met both functional and risk-level requirements, with the search
terminating upon reaching the desired state. In Cardinale et al. [48], we further developed this approach,
proposing a two-stage strategy that first identify execution paths meeting user’s transactional require-
ments, then select the path that best satisfied QoS constraints through local optimisation. Separately,
in Blanco et al. [34], we introduced a utility function that integrated functional capabilities, QoS, and
transactional attributes, enabling a ranking of compositions based on user criteria. User requests speci-
fied functional requirements via input/output attributes, non-functional constraints via QoS values, and

26 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

transactional requirements as risk levels. This work differs from that of Cardinale et al. [48] in two key
ways: component selection was guided by the utility function rather than transactional filtering, and it
employed a global optimization approach using an A*-based heuristic. Additionally, we presented PT-
SAM-Transac, a service composer that adapts the Petri net deployment algorithm to be guided by the
utility function, efficiently identifying compositions while exploring only a small part of the search space.
The integration of transactional properties into the selection and composition phases in all our above con-
tributions addressed a gap in earlier QoS-centric research, contributing to the field’s gradual convergence
toward solutions that balance both efficiency and consistency.

In parallel, our contributions shifted towards exact optimization approaches for the selection prob-
lem, focusing initially on quantitative QoS attributes, along with efforts by Ardagna et al. [16], Bonatti
and Festa [35], and Zeng et al. [257], who similarly framed the problem as a combinatorial optimization
challenge. In El Haddad et al. [82], we introduced the concept of fairness to ensure equity among users
in the execution plans. Zeng et al. [257] addressed multiple usage scenarios (i.e., execution paths) by
optimizing each execution path independently and merging them into a single plan, selecting for each
task the service from the most frequently executed path, called the hot path. However, this approach can
lead to globally suboptimal solutions, as we will illustrate in Section 3.4.1. To overcome this limitation,
we introduced the maximum regret criterion to minimize the worst-case deviation from optimal solutions
across all scenarios. We defined an equitable solution as one that is optimal in terms of maximum regret
and formulated the problem of finding such a fair execution plan as a Linear Integer Programming model.

Having achieved effective exact approach for the selection phase, we advanced further to develop ex-
act method for composition phase addressing solely quantitative QoS attributes in Abu-Khzam et al. [3]
(Section 3.5), placing the contribution firmly within the domain of exact modeling techniques, such as
those explored by Schuller et al. [202, 203], and Trummer et al. [221]. In this work, we examined the
computational complexity of the QoS-aware service composition problem in complex workflow patterns.
Addressing a long-standing open question, we provided a formal proof of the problem NP-hardness. Our
analysis revealed that complexity depends on workflow structure, the number of tasks, available alterna-
tive services, and types of QoS criteria. We showed that the problem is solvable in polynomial time when
only one QoS criterion exists per task, unless tasks are accessible via multiple transitions within the work-
flow, which makes it strongly NP-hard. For a fixed number of criteria, we demonstrated the existence of a
pseudo-polynomial time algorithm, suggesting that the problem may be less computationally challenging
in practice than previously assumed.

Drawing upon our experience with exact methods, and with handling quantitative and qualitative at-
tributes, we subsequently proposed an exact-based composition approach capable of managing both types
of quality attributes simultaneously (Gamez et al. [92, 93]) (Section 3.4.2). Perhaps most significantly, this
contribution represent an innovative step in the state-of-the-art by proposing an exact-based composition
approach capable of simultaneously managing both quantitative and qualitative attributes. This positions
the contribution as a bridge between earlier heuristic integration of transactional properties and exact ap-
proaches, filling a critical gap in methods that often consider either QoS or transactional attributes in iso-
lation. Additionally, in all our previous contributions, services were treated as black boxes, assuming at
least one service met transactional needs for each task. To overcome this limitation, we adopted a Software
Product Line approach, grouping services with identical functionality into families modeled using Feature
Models (Lee et al. [136]). These models represent variable operations as optional features and common
operations as mandatory, with constraints capturing dependencies and non-functional properties. This
enabled us to identify valid service configurations (i.e., optimal combination of services) whose aggre-
gated properties satisfy global requirements (i.e., user preferences and workflow constraints). In Gamez
et al. [92], we focused on transactional properties, while in Gamez et al. [93], we extended this work
to include both transactional and QoS properties. The latter approach also accommodates conversation-
based services, which involve multiple operations with internal transitions, unlike stateless services with
atomic, independent operations. By using cross-tree constraints in feature models, we captured depen-
dencies between individual operations’ transactional properties and the aggregate behavior of the entire
service, ensuring precise alignment with user preferences. A key advantage of these approaches is the
ability to dynamically compose new services from existing operations at runtime, eliminating the need
for pre-deployment and relaxing the initial assumption that valid services must be pre-available.

3.3 Heuristic Approaches 27

3.3 Heuristic Approaches

3.3.1 Transactional- and QoS-based Service Selection

The content of this section is adapted from El Haddad et al. [78, 80] work carried out in collaboration with colleagues
from Universidad Central de Venezuela and Université Paris Dauphine-PSL

Overview

In this line of research, we focused on selecting component services to obtain a transactional compos-
ite web service that maximize user satisfaction by meeting both the QoS and transactional requirements
specified by the input workflow and user preferences. As represented in Figure 3.3, the inputs of the se-
lection process include a workflow, transactional requirements expressed in terms of risk level, and a set
of weights over QoS criteria. Based on the input workflow, the Composition Manager searches the service
registry for candidate component services for each activity (i.e., task) of the workflow, taking user pref-
erences into account. Using the retrieved candidate services, the Planner Engine generates an execution
plan that is an assignment of one component service to each task of the input workflow.

N/‘orkﬂow / Web Services Registry
8 Preferences
—

End-User Composition Manager Transactional QoS
composite service)

Figure 3.3: System architecture

Definition of risk

To explain the transactional service selection process, it is first necessary to define how users can express
their transactional preference. The importance of the uncertainty in execution completion is captured by
a criterion called risk. In terms of transactional properties, we consider properties a and ar to be riskier
than c and cr. Therefore, we defined the following two levels of execution risk in a transactional system:

® RO: the system guarantees that if the execution is successful, the obtained results can be compen-
sated by the user (i.e., the user can execute another application that can semantically undone the
previous one).

® R1: the system does not guarantee the result can be compensated (or semantically undone) by the
user in case of successful execution.

Aggregation of transactional properties

The selection process assigns services to workflow activities in order: from left to right in sequential pat-
terns and from top to bottom in split patterns. The automaton in Figure 3.4 models all possible transac-
tional composite services generated through this process. State I represents the initial state, and the final
states (c,cr,a, and ar) correspond to the transactional properties of a composite web service. When one
of these final states is reached, a valid transactional composite service has been successfully constructed.
The rules guiding sequential and parallel composition follow those outlined in Chapter 2, Table 2.1.

28 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

sprt/er scr
;ch\ fler ;ar
)2 () o
C ar ;a U sa /la ;ar //ar
ser .
" ler ;arC/‘ P jer
HY //pr;cr

Ile

Figure 3.4: Transactional properties aggregation

Aggregation of QoS values

In this line of work, for each activity, a set of transactional services is first selected based on transactional
requirements. Subsequently, a QoS-driven selection is performed. To select one service for each activity,
we applied a Multiple Criteria Decision Making (MCDM) approach (Zeleny et al. [254]) based on the
weights assigned by the user to each quality criterion. We used a Simple Additive Weighting technique
to assign a quality score to each service as follows:

e Scaling phase : each criterion value g;(s;x) is normalized to g;(s;;) that is a scaled value such that
d;j(sik) € [0,1]. Some of the criteria are negative, like execution time and execution price, are scaled
negatively (the higher the value, the lower the quality) while other criteria are scaled positively (the
higher the value, the higher the quality) as shown in Equation 3.1.

q;(Sik —q’-”i" . . ey o~ ;
Jq(mfm)jin if ¢; is positive and ¢;"** —¢j*"" # 0,
J J
P _ a7 —q;(sik) . . . i
Gj(sir) = § L%k g 0 js negative and 7% —gin £ ()
J q‘;YLU,.LAq;YLLTL q] g QJ q] # Y
1 otherwise.

(3.1)

e Scoring phase : Score(s;x) = >, w;q;(sik), where w; € [0, 1] is the weight assigned by the user to
the quality criterion j such that), w; = 1 and g;(s;x) is the value of criterion j for service s;.

Based on Score(s;), the service with maximal score is selected to execute the activity a;. If there are
several services with maximal score, one of them is selected randomly.

Algorithm

The TQoS-driven selection algorithm takes as input a workflow W F' composed of n activities and outputs
a transactional composite web service (TCWS), consisting of elementary or composite web services as-
signed to each workflow activity. Each web service assignment affects subsequent selections through its
transactional property, tracked via state variables. Two risk levels govern the algorithm’s behavior: when
risk chosen by the user is R0, than only compensatable or compensatable retriable web services are as-
signed to each activity, selecting the service with the best QoS score. When risk chosen by the user is R1,
the algorithm considers initially all possible transactional properties. Services are iteratively assigned to
workflow activities via the ASSIGN_NEXT function, which adapts the permissible service set based on the
current TCWS state and transactional properties.

Function ASSIGN_NEXT analyzes the input workflow, W F', from the current position i. If the ith ele-
ment of WF' is AND-split or XOR-split pattern it calls function ASSIGN_AND or ASSIGN_XOR respectively.
If the ith element of W F' is a sequence pattern which is inside an AND-split or a XOR-split pattern, the

3.3 Heuristic Approaches 29

function is recursively called after the update of set W.S_Set, depending on the state of the current result-
ing transactional composite web service . Otherwise, the ith element of W F is an activity, then function
ASSIGN_NEXT assigns a web service to the jth activity of the workflow having the best QoS and variables
State and NT P are updated. We use a function GetBestofQoS(WS_Set, j) that returns the web service
having the best QoS among the set of web services which can execute the jth activity of WF (subset of
WS_Set), and a function GetTPOf (W.S) that returns the transactional property of the Web service W S.

A function, ComputeQoS(T'CW S), is implemented to evaluate the QoS of the resulting transactional
composite web service from the QoS scores of its component web services .

3.3.2 Transactional- and QoS-based Service Composition

The content of this section is adapted from Blanco et al. [34] and Cardinale et al. [47, 48] work carried out in
collaboration with colleagues from Simén Bolvvar University and Université Paris Dauphine-PSL

Overview

In this line of work, we proposed a hybrid approach that integrates meta-heuristic search technique to
address functional requirements, QoS constraints, and risk levels defining transactional needs. These
aspects are collectively considered to generate good service compositions; goodness is evaluated based
on the combined degrees of satisfaction with respect to functional, QoS, and transactional criteria.

To this end, we extend the Coloured Petri Net (CPN) formalism to model both QoS and transactional
properties within the composition process. Our CPN-Transactional Web Service (CPN-TWS) algorithm
employs a Petri net unfolding approach to conduct a Best-First Search, which stops upon reaching a de-
sired marking (i.e., user-specified output attributes) from an initial marking (i.e., user-specified input at-
tributes) in the CPN. The unfolding process is guided by local QoS metrics and aggregated transactional
properties, ensuring that the resulting composition satisfies user-defined functional objectives, QoS ex-
pectations, and risk requirements.

Our experiments indicate that considering transactional properties during service selection and com-
position has no significant impact on the execution time of our approach. Theoretically, the algorithm has
a complexity of O(card(S)?), where card(S) denotes the number of services in the registry, a result that
is consistent with our experimental observations.

Registry modelling

The service registry is modeled as a Web Service Dependency Net(WSDN), following Chapter 2, Defini-
tion 2.3.1. It is important to emphasize that the execution of a service s cannot forbid the execution of an-
other service s’ that shares the same input attributes; such services are considered independent. However,
the execution of a service s may enable the execution of other services by producing the input attributes
they require. We provide in Figure 3.5 an example illustrating the construction of a WSDN created from
the web services s; to sg.

Our approach

We proposed an automatic approach to resolve the service composition problem. The input of our algo-
rithm is the user query @ and the WSDN, representing dependencies among the services of the registry
along with their input and output attributes. The output of our algorithm is, if a solution exists, a CPN
denoted W SDN,,, representing the set of transactional web services selected for the composition. As
illustrated in Figure 3.6, our CPN-TWS selection algorithm comprises four steps. Step 1 verifies the ad-
missibility of Q. Step 2 identifies the web services in the registry (i.e., the transitions in the WSDN) that
may contribute to producing the outputs of () by considering the transactional properties (TP) that satisfy
the risk level. Step 3 returns a firing sequence o, containing the component web services of a transac-
tional composite web service selected based on optimal local QoS to satisfy (). Step 4 returns a CPN,

WSDNg,,, built from 0 and allowing to execute the resulting transactional composite web service .

30 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

WS Inputs Outputs TP %
s1 AuthorCod, Inst PubCod p
s2 AuthorName PubCod p
s3 PubCod Title p
s4 PubCod ConfCod p PubCod S5 ConfName
s5 PubCod ConfCod,ConfName p
s ConfCod ConfName,ConfDate cr
s7 Inst AuthorCod P
sg ConfCod ConfPlace pr AuthorCod
s9 AuthorCod ConfCod pr 6
Services in the registry QULIOICCC ConfDate
(example from Blanco et al. [23]) *’O
Inst ConfCod

ConfCod
PubCod s3 Tite

s2 S8 ConfPlace

AuthorName

O
-4 5 O
Adding a WS into a WSDN \O7|—

WSDN

4

Q=(1Q,0Q,RQ,WQ) —
->| User query admissibility [

8 I r
FALSE R
User Query lEJ
| Identification of useful WSs |——> 7?-
WSDNq
<——| Automatic WSs Selection I(_—l
J

Gq

®
reation of resulting CPN |——> _2)
"o

WSDNg,

AN

Figure 3.6: CPN-based Transactional- and QoS-based Service Composition Approach

Stepl: Query admissibility. A query Q = (Ig,Oq, Wq, Rg) (see Chapter 2, Definition 2.1.1) is admis-
sible iff the web services registry contains (i) at least one web service whose TP satisfies Rg and whose
input attributes are included in /g, and (ii) one or more web services , whose TP satisfies R, allow to
produce all output attributes of Og. Let Sg,, be the set of transitions whose color satisfies R¢,. In terms
of CPN, Q is admissible iff the W.SDN contains (i) at least one transition of Sg,, with all its predecessors
in I and (ii) one or several transitions of Sr, such that the union of their successors contains Oq. If
both conditions are satisfied, then the selection algorithm can proceed to the next step. Otherwise, the
algorithm can not continue (there is no fireable transition, then no solution satisfying @) can be found).
Note that the admissibility of () does not guarantee that a solution satisfying) exists. We illustrate this
step with the following example.

Example 3.3.1. Suppose the registry represented by the WSDN of Figure 3.5 and let R = R; (i.e., Sgr,
contains all the web services of the registry).

3.3 Heuristic Approaches 31

XIf Og = {ConfName, ConfDate, AuthorName}, then @ is not admissible because place
Author Name has no predecessor (i.e., it represents an attribute which can not be produced by any ser-
vice).

v Now suppose Og = {ConfName,ConfDate} and if (Ig N {Inst, AuthorCod, AuthorName,
PubCod, ConfCod}) # 0, then @) is admissible because all places corresponding to the attributes of Og
has at least one predecessor (i.e., they can be produced and at least one web service can be executed from

1g).

Step2: Identification of the potentially useful services. To build the set of potentially useful web ser-
vices , we analyzed the WSDN from the output places corresponding to the output attributes of Og and
creates a new CPN, called WSDN,, by recursively adding all the predecessors of the analyzed places
or transitions, using a bottom-up marking. If it does not exist at least one input attribute € /g among
the input places of WSDNg (i.e., the places with no predecessor), then the algorithm returns an error,
because no transition is fireable and then no web service can be selected, meaning that () has no solution.
Otherwise, the selection algorithm can proceed to the next step. This step is inspired from the yellow
coloring step of SAM algorithm of Brogi et al. [40]. We illustrate this identification step with the following
example.

Example 3.3.2. Suppose Io = {Inst}, Og = {ConfName,ConfDate}, Ro € {Ro,R1}, the WSDN of the
registry is represented by Figure 3.5, and all web services are either compensatable or compensatable re-
triable. In this scenario, the result of this step is the CPN W S DN, represented in Figure 3.7(a). It contains
predecessors of Con f Name and Con f Date places and recursively their predecessors. Transitions s3 and
sg of WSDN do not appear in W SDNg because they are not predecessors of Con f Name and Con f Date.
When the transactional properties of the web services are those represented in the TP column of Figure 3.5
and Rg = R;, then only transitions s7, s9, 4, s5, and sg are selected as depicted in Figure 3.7(b).

s9 s9
PubCod S5 ConfName PubCod S5 ConfName
AuthorCod AuthorCod
AuthorCo PubCod S4 s6 /cConfDate PubCod S% s6 /confDate

5

ConfCod I O ConfCod

s2
AuthorName

(a) Considering all services are c or cr (b) Considering TPs of Figure 3.5
Figure 3.7: The WS D Ng resulting from Step 2

Step3: Automatic selection of the component web services. The automatic selection step consists in
building a path into the coverability tree of (W SDNg, Mg) (without building all the coverability tree),
such that the firing sequence associated with this path corresponds to a transactional composite web
service satisfying the user query and requirements. The inputs of this step are the W SDN, returned by
Step 2, the initial and the final markings (Mg and MFp), and the user query Q. Its output is, if it exists, a

32 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

firing sequence o, corresponding to the transactional composite web service whose components are the
web services of the registry required to evaluate () and, satisfying all user requirements.

Example 3.3.3. Let suppose that I = {Inst} and Og = {ConfName,ConfDate}. Depending on the
color of the transitions, the following firing sequences (see Chapter 2, Definition 2.3.7) can be returned:
{s7,51,54,56}; {57,51,55,56}; {57,51,54, 55,56 }; {57,51,55,56}; {57,59,56}; {57,51,59,56}; {57,59,51, 56}
Note that if s, is fired, then sy is cut-off and if sy is fired, then s, is cut-off (because s, and sy produce the
same output attributes). If s5 is fired then s4 and sg are cut-off (see Chapter 2, Definition 2.3.8) ((because
(84)°C (s5)® and (s9)°C (s5)®). If s4 and sg are fired or if sg and s¢ are fired then s; is cut-off (because
(s5)°C [(8:)® U (s6)®) with i € {4,9}).

When several transitions are fireable, to select which transition has to be fired, we proposed a quality
measure of a transition s which depends on the user query @ such that:

Definition 3.3.1. The quality of a transition s; € S, called Qualityg(s;), depends on the user query @ and
is defined as:

Qualityg(si) = Score(s;) x g(Cs(s;)) X (card(Og N s7) + 1) x (1 4 %)

with Score(s;) = 3, w;j x ¢j(si) with (w;, ¢;) € Wq and g;(s;) the value of the QoS criterion g; for the service
corresponding to s;, and with g : 3¢ — N, a function such that: g(p) = g(a) < g(pr) = g(ar) < g(c) < g(cr).

> Value Score(s;) allows to evaluate the QoS of the service corresponding to a transition s (the higher
the score, the better WS QoS).

>Function g allows to select a transition whose transactional property is the less restrictive. An example
of g could be: g(p) = g(a) =1, g(pr) = g(ar) = 2, g(c) = 3, and g(cr) = 4.

> (card(Og N's7) + 1) gives more chance to select transitions,producing more required outputs.

> (1 4 erd(H)+1)

~ara(S)) increases the quality to those transitions which will allow more transitions to be
fireable.

Step4: Creation of the resulting CPN. Suppose that Step 3 returns the firing sequence g = {s7, s1, 84, S5, S6 }
0@ contains a useless transition, s;. Indeed, [(s$)* C (s2)*]and Mg = Mp, withs = 0o —{s4}, however s,
has been selected before ss5, therefore it was not considered as cut-off. As a consequence, we add another
step to our algorithm, in order to eliminate potentially useless transitions of the resulting firing sequence.
Moreover, if Step 3 produces the firing sequence og = {s7, s1, S9, S¢ }, this last step will eliminate transi-
tion s; because in o there is no sequence of transitions starting from s; and leading to the output places
of OQ.

In this sense, the last step of the CPN-TWS algorithm consists in cleaning the firing sequence result
of Step 3 by deleting useless transitions from 0. Note that the resulting Colored Petri Net, WSDN,, ,
created from oy, by Step 4, is used to execute the resulting transactional composite web service .

3.4 Exact Approaches

3.4.1 QoS-based Service Selection

The content of this section is adapted from El Haddad et al. [82] work carried out in collaboration with a colleague
from Sorbonne Université

Overview

Returning to our motivating example in Figure 3.1, users may follow different executions paths: execution
path A for those booking a plane ticket using (T1,T2), execution path B for those booking a train ticket

3.4 Exact Approaches 33

using (T1,T3), and execution path C for those booking a car seat using (T1,T4). An execution plan (i.e., a
composition) consists of selecting one service for each task. Since multiple execution plans are possible, to
differentiate them, QoS attributes are used. For a given execution path, the QoS of the resulting composite
service (corresponding to a specific execution plan) for each criterion is computed using an aggregation
rule specific to that criterion (see Chapter 2, Section 2.3), and the resulting QoS vector is then transformed
into a single quality indicator through Simple Additive Weighting technique (see Section 3.3.1).

However, determining the execution plan that optimizes the overall quality indicator is a combinatorial
problem.Moreover, even for the same execution plan, QoS values may vary depending on the specific
execution path taken by the end user. To solve this, in their work, Zeng et al. [257] proposed a method to
handle the multiplicity of execution paths as follows:

e Separate solutions for each execution path: independently determining the optimal selection for
each of the execution paths, then

e Merge selections: merging the selections into a single execution plan. To do this, the authors assign
to each task the service chosen in the execution path corresponding to the hot path for that task. In
other words, if a task T; belongs to several execution paths, the service selected is that of the most
frequently used path.

The hot path of a task is the execution path most often used when executing that task. However, this
approach can lead to unsatisfactory selections overall, as we will illustrate in the following example.

Example 3.4.1. For simplicity, consider only two paths: A (T1,T2) and B (T1,T3). Suppose that 49%
of users have chosen execution path A (T1,T2), while 51% of them execution path B (T1,T3). Consider
user preferences expressed as weights for response time and execution cost are 0.7 and 0.3 respectively.
Applying the hot path approach leads to the following:

o Separate solutions for each execution path: the optimal solution for each task is computed using
Simple Additive Weighting technique.

— For a user taking execution path A, ¢/ = 13, ¢[*" = 2, ¢5"%® = 20, ¢5*'" = 10. Then services
s12 and so3 will be selected respectively for tasks T1 and T2 of path (T1,T2) with an overall
quality score of 0.83.

— For a user taking execution path B, ¢7**® = 11, ¢* = 6, ¢5*® = 20, ¢5* = 18. The optimal
solution is s;; and s32 with an overall quality score of 0.82. Then services s1; and s3o will be
selected respectively for tasks T1 and T3 of path (T1,T3) with an overall quality score of 0.82

e Merge selections: for the execution plan (T1,T2,T3), for tasks T2 and T3, services so3 and sz, will
be selected respectively. While for task T1, the service s;; is the one that will be selected because
the task appears in both paths and path B is the most chosen one (hot path).

Now let us see how the use of the hot path will lead to unsatisfactory users :

Example 3.4.2. Back to our example, we have:

o For users taking execution path A, with the use of hot path, they have to execute s1; and s23. Such
solution has an overall quality score of 0.53. This means a regret score for such users of 0.3.

e For users taking execution path B, with the use of hot path, they have to execute s1; and sgz. This
means a regret score for such users of 0.

34 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

Fairness in service composition

To overcome the above drawback, we explicitly took into account the different possible usage scenarios
(i.e., execution paths). To do this, we drawed inspiration from work carried out in robust optimisation
(Kouvelis et al. [131]), this latter notion being formally close to the notion of fairness. In particular, we
aimed to minimise the maximum regret criterion, traditionally used to measure the robustness of a solu-
tion. In the context of service composition, fairness (Moulin [178]) will refer to the concern not to one
end-user with respect to another in the execution plan used to perform the various tasks. In this work,
we were the first as long as we know to introduce this new attribute and a notion of equity in service
composition by proposing to use the fairness to minimize the max regret of a user.

Overall, the objective of our work was the simultaneous consideration of multiple execution paths.
The aim was to maximise the satisfaction of the user who has suffered most. In El Haddad et al. [82],
we proposed an approach for computing fair optimal solution in the sense of this criterion. We gave
a formulation of the problem of such a fair execution plan with a Linear Integer Program as described
below.

Linear Program formulation

Our linear program in mixed variables for two execution paths A, B is presented as follows :

minmax{Ra, Rp}

Ry = QoS% —QoSy (regret A)
Rp = QoS — QoS (regret B)
Ziesj yij = 1 VjeAUB (one web service per task)
Yies, Pij¥i; = p; VjE€AUB (duration of a task 7)
Tioa— (pj+xja) > 0 Vtj =t (j,k e A) (precedences A)
g — (pj+x58) > 0 Vt; =t (j,k € B) (precedences B)
Q24 > xja+p; VjieA (duration of A)
Q2 > zjp+p; ViEDB (duration of B)
Qua = Djca Ziesj CijYij (cost of A)
Q25 = ZjeB Ziesj CijYij (cost of B)

zjA,r5B >0, yi; €{0,1}

3.4.2 Transactional- and QoS-based Service Composition

The content of this section is adapted from Gamez et al. [92, 93] work carried out in collaboration with colleagues
from Universidad de Mdlaga

Overview

Our purpose in this line of work was to assist users in integrating on the fly the operations of services
to realize their required tasks by further meeting their transactional and QoS preferences. Towards this
purpose, we proposed a Software Product Line based approach for conversation-based service selection
with transactional and QoS support. Unlike classical transactional-aware selection approaches where if
a requested service with some transactional property is not deployed, then no solution is possible, our
approach only need to ensure that there is at least one configuration of a service family that could be
generated satisfying the required transactional property. Figure 3.8 depicts our approach that comprise
three steps.

Step 1: Workflow Feature Model Generation and Specialization

We automatically generate the feature model from the requirements model by mapping workflow spec-
ifications to feature model elements (see Figure 3.8). Each workflow task becomes a mandatory feature,

3.4 Exact Approaches

35

while parallel, exclusive, and inclusive gateways correspond to AND, XOR, and OR feature relationships,
respectively. The mapping also preserves the control flow of the workflow from left to right within the

User Requirements and Preferences Transactional Services Reposirtory
Transactional Preferences (TP), QoS constraints
Capability, Operations,
2 Transactional Property (TP(op))
3—2 Transactional Property (TP(service))
S QoS values
=
WE[—» @ @ @ Control | Transactional
sequence | parallel | exclusive | inclusive | Flow Properties
Step 1] L Step 2
P ™| oo | o ﬁ x leftto | Cross-tree
mandatory [AND XOl OR Right Constraints
Workflow Feature Model WF Specialization Service Feature Model Madel
P, %
I Step 3 l
Services Valid Configurations Services Final Configuration WF Final Configuration

Figure 3.8: SPL-TQSSS Approach

feature model. Additionally, transactional rules (see Chapter 3, Table 2.1) are mapped as cross-tree con-

straints that are used to specialize the Workflow Feature Model by removing the features that do not satisfy
the transactional preferences. We use the transactional rules to automatically generate Cross-tree constraints
that relate the user preferences with the transactional property of each task. These constraints together
with the relationships between the features in the diagram are used by Hydra' to automatically generate

the Workflow Specialization. This WF Specialization, shown in Figure 3.9, represents the set of valid con-

figurations of the workflow feature model, capturing possible transactional properties for each task in

accordance with the overall transactional requirements.

Figure 3.9: Workflow Feature Model Generation and Specialization

User Requirements and Preferences

Transactional Preferences : BPMN Notation
1= Atomic (a) n
Flight Book
ﬂ 2= Compensatable (c) 2 g 8 Start
End

3= Retriable (ar or cr) S
Sequence flow

Parallel gateway

QoS constraints :
Cost < 2€
Response Time < 30 min

Exclusive gateway

@ Inclusive gateway

Hotel Book
(HB)

[Trip Planning Workflow
j

l Step 1

Workflow Feature Model i
Hydra FM Notation

B

Mandatory

2T D @
FB: FBcr TB< TBcr
Cross-tree constraints

Pref_a implies (HB_a and (FB_cror TB_cr)) or (HB_crand (FB_a or TB_a));

Transactional Preference: Pref 2

Pref_cimplies (HB_c and (FB_c or TB_c)) or (HB_c and (FB_cr or TB_cr)) or (HB_cr and (FB_c or TB_c));
Pref_crimplies (HB_crand (FB_cr or TB_cr));

Pref_ar implies (HB_ar and (FB_ar or TB_ar)) or (HB_ar and (FB_cr or TB_cr)) or (HB_cr and (FB_ar or TB_ar));

Hydera is a tool for feature modelling developed by Caosd Research Group (https://caosd.lcc.uma.es/hydra/)

36 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

——_—_ Transactional Services Reposirto
(capability: FlishtBook (FB) il

Capability: HotelBook (FB) Capability: FlightBook (FB) (Canibllltv:TramBooktTBj
Operations:
op1=Display_tineraries, TP(op1)=cr,
Cost(op1):0,Time(op1):3 Operations:
op2=Select_ltinerary,TP(op2) =cr, op1-Display_Timetable,TP(op1)=cr,
Cost(0p2):0,Time(op2):1 Cost(op1):0,Time(op1):4

p3- Info,TP(op3)=c, 0p2 = Select_Timetable, TP(0p2) =c
Cost(op3):0,Time(op3):6 Cost(op2):0 Time(op2): 3

op4 = Online_Payment,TP(opé)-p, 0p3 = Buy_Ticket, TP (op3) = cr
Cost(op4):0,Time(op4):10 Cost(op3):0 Time(op3): 12
Protocol:

OO IO NC,

Plop1;0p2)-cr
T

Services Valid Configurations Services Final Configurations

HB Valid Configurations with inout Proo ¢

Capability: HotelBook (HB) Capability: TrainBook (TB)
Operations:
op1=Room_Price, TP(op1)=c
Cost(op1):0, Time(op1):1
p2-] , TP(op2)=cr
Cost(op2):1, Time(op2):2

TR(s)=c
Cost(s): 1€ Time(s): 3mn

HB Valid Configurations with input Prop_cr
NO VALID CONFIGURATION FOUND

TP(op1;0p2)
TR

TP(opliop2iop3iopdl=a .’

TP(s)=c Costs):0€ Time(s): 20mn

(s)-a
Q:nsx(s) : O€ Time(s): 20mn FB Valid Configurations with input Prop_c

NO VALID CONFIGURATION FOUND Qos
105 :

Cost<2€
RT< 30 mir

Services Feature Models 1 Step 2
Hotel Booking FIV (HFM)

opl_cand op2_c implies Prop_c;

op1_c and op2_cr implies Prop_c;
2 g oo, -

Flight Booking FM (FFM) || Train Booking FM
(

FB Valid Configurations with input Prop_cr
NO VALID CONFIGURATION FOUND

op1_ar implies not op2_c;
op1_ar and op2_cr implies Prop_ar;

TB Valid Configurations with input Prop_c

TB Valid Configurations with input Prop_cr
NO VALID CONFIGURATION FOUND

op1_c and op2_cr and op3_c and op4_p implies Prop_a;
opl_cr and op2_cr and op3_cand op4_p implies Prop_a;
op3_p implies not op4_p;

Figure 3.11: Services Valid Configurations and
Final Configurations

Figure 3.10: Services Feature Model Generation

Step 2: Services Feature Model Generation

The discovery process identifies, for each workflow task, the services in the repository that provide the
required functionality. In this step, services fulfilling the same task and offering similar functionality are
grouped into service families and mapped to feature models. This mapping is performed automatically
using the same principles defined in the first step, but now modeling the internal operations of services
instead of workflow tasks. Then, using SPL refactoring techniques (Alves et al. [12]), the feature model
that contains all the service configurations belonging to a family is generated. As we did with the workflow
feature model, at the beggining we assume that the transactional property of this service family could be
whichever of the four possibilities. Then, following the transactional rules of Table 2.1, we automatically
generate the cross-tree constraints. As a result, for each task, we obtain a Service Feature Model, as shown
in Figure 3.10, representing the service family associated to it. This family generation is required only
during the initial discovery. For next discoveries, the same feature model is reused. If new services with
equivalent capabilities are deployed or removed from the repository, the service family is dynamically
updated by adding or removing features corresponding to the internal operation alternatives. Note, that
a service feature model represents not only the currently deployed services in the repository but also any
combinations of operations that might not correspond to any deployed service at present.

Step 3: Service Valid Configuration Generation and Selection

As this stage, we have generated the Services Feature Models and the WF Specialization taking into account
the user transactional preference. Then, for every task of that specialization, Hydra automatically obtains
the Service Valid Configurations that satisfy the preferences selected in the specialization.

For each task, a Service Valid Configuration is selected that satisfies the required transactional behav-
ior, services within the family whose operations comply with the transactional properties of the task. To
choose among all valid configurations for each service family, we apply QoS constraints. Firstly, we con-
sider the generated service valid configurations that have correspondence with deployed services. Among
these, we select service configurations that yields the highest QoS score. If no deployed service matches
the required configuration or fails to meet the QoS constraints, we dynamically generate a new service
on-the-fly by composing the necessary operations from the valid service configuration. With this process,
we select one Service Final Configuration for each workflow task, resulting in one WF Final Configuration.

Then, we perform optimal services selection from the service valid configurations using the Simple
Additive Weighting method, which involves two phases: scaling to normalize cost and response time

3.5 A Glimpse on Further Contributions 37

values of each service s between 0 and 1, and weighting to compute a score for each service as follows:
score(s) = wy X coi(;iwﬂ:_ocsiét +wsy X TZZZI;OSZ;:ZZLP::@j&;ﬁo;;;;m" where w; € [0,1] and 25:1 w; = 1are
weights for cost and response time. If the values of these weights are not expressed by the user preferences
then we consider wy; = wy = 0.5. cost and responsetime refer to the scaled values for service s; cost™**
and cost™™" (resp. reponsetime™® and responsetime™™) are the maximum and the minimum values
across all valid configurations within a family.

Then, for the last WF Specialization, we generate all possible compositions between services associated
to service valid configurations and the composition which maximizes the score function while satisfying
the QoS constraints is selected. If there is more than one composition that has the same maximal score
value, then a composition will be selected from them randomly. If no composition satisfies the user QoS
constraints, then we generate a proper composition by generating on-the-fly suitable services from the
service valid configurations.

As the last WF Specialization did not have more possible choices, so this is the WF Final Configuration of
Figure 3.11 where the two tasks are compensatable, as well as the two selected services and their associated
service valid configurations. In other case, if more than one choice would be still pending in the last WF
Specialization, then we would make the selection attending to the QoS constraints as we have done with the
choice between the two valid configurations HB1 and HB2 of the hotel booking service using the method
described above. The score for each of these choices is then computed as the sum of the scores of its
selected services. The choice with the best score is finally chosen.

After all these model transformations we have obtained automatically the WF Final Configuration and
the best Services Final Configurations that satisfy the user functional and non-functional requirements.

gmaz

3.5 A Glimpse on Further Contributions

Complexity of QoS Service Selection Problem

The content of this section is about Abu-Khzam et al. [3] work carried out in collaboration with colleagues from
Lebanese American University and Université Paris Dauphine-PSL

In this work, we addressed the QoS-aware service selection problem by considering complex workflow
patterns. More specifically, we focused on the computational complexity of the problem and investigates
workflow structures where the problem is solvable efficiently in polynomial time. The NP-hardness of the
problem, under various settings, had been an open problem for many years and had never been addressed
thoroughly. We studied the problem complexity depending on the workflow structure, the number of
workflow tasks, the number of alternative services per task and the types of quality of service criterion
associated to services. We provided for the first time the NP-hardness proof of the problem. Additionally,
we showed that the problem is solvable in polynomial time in case of only one criterion per task unless
tasks can be reached via multiple transitions in a workflow in which case we showed that the problem
is strongly NP-hard. Most importantly, we proved that the problem is solvable by a pseudo-polynomial
time algorithm if there is a fixed number of criteria. Our findings reveal that, in most practical settings,
the problem is not as hard as claimed.

Exact approach for Transactional-QoS-aware Stateful Service Selection and Composition

The content of this section is about the master thesis work of Massimoliano Drezza 73] from Politenico Di Milano,
that I have supervised alone.

In this work, we proposed an algorithm to improve the efficiency of QoS-aware web service selec-
tion using Integer Programming (IP). Our approach is built upon models from Ardagna and Pernici [16]
and Ben Mokhtar et al. [176], integrating them into a unified framework for solving IP problems. In our
proposed model, we used Finite State Automata (FSA) to formally represent both web services and user
requirements, capturing conversation-based service behavior in a structured way. Our model considered
three QoS dimensions commonly used in the literature: two negative (execution price and latency) and
one positive (availability). The selection process is structured into four main steps. The discovery step
based on semantic distance, this step identifies web services with potentially matching capabilities. The
second step is preliminary selection directly inspired by the work of Ben Mokhtar et al. [176]. This step

38 Chapitre 3. Efficiency and Consistency in Service Selection and Composition

checked whether the service control flow (expressed via FSA) aligns with the user’s request FSA, yield-
ing a refined list of candidates. the third step is a transformation, it restructured services by aggregating
capabilities along valid execution paths. Each service is then represented as a set of aggregated capabil-
ities with associated QoS values. The last step is IP Resolution. Using the simplified service model, IP
was applied to assign the best possible service capabilities to each user task, according to user-defined
preferences, weights, and constraints. This result in an optimal execution plan, that we denoted EPOPT,
that maps each capability in the user’s request to a service invocation that maximizes QoS while satisfying
all constraints. EPOPT is derived by assigning binary values to decision variables in the IP formulation.
Experimental evaluation demonstrates that our approach achieves optimal solutions more efficiently than
traditional methods. Tests using IBM ILOG CPLEX confirm the algorithm’s speed, scalability, and effec-
tiveness in solving the QoS-aware service selection problem.

Exact approach for QoS-aware Cloud Service Selection

The content of this section is about the master thesis work of Alice Di Luise [159] from Universitd Degli Studi Di
Roma Tor Vergata, that I have supervised alone.

In this work, we addressed the QoS-aware service selection problem in a Cloud environment. Unlike
traditional SOA-based systems, Cloud-based applications must account for IaaS, PaaS, and Saa$S resources.
As a result, a service candidate is not a monolithic unit with a single QoS profile but often a composite of
multiple components, each with its own QoS attributes (Ye et al. [245]and [246]). We observed that some
approaches rely on user logs (Sun et al. [214], Wang et al. [232], Zheng et al. [269]), while others use SLA
or provider published data (He et al. [114], Zhang et al. [261]). Our method integrated both sources:
logs that provide realistic and dynamic insights (e.g., user-dependent variations in response time), and
published data that offer consistent fallback information when logs are unavailable or sparse. To solve the
selection problem, we proposed an exact solution via Integer Programming, preceded by a service space
reduction phase. This phase incorporated entropy- and hyper-entropy-based filtering (Sun et al. [214],
Wang et al. [232]), as well as a similarity computation module inspired by Zheng et al. [269] used to
eliminate low-performing candidates rather than to rank them. The input was a workflow of abstract
tasks, each representing a required functionality within a composite application. For each task, there
exists a set of candidate services (SOA or SaaS), and only one must be selected. In the Cloud context,
resource selection extends to IaaS and PaaS components such as virtual machines (VMs) and databases
(DBs). Users define constraints and weights over QoS attributes, including response time, throughput,
availability, price, number of vCPUs, memory, and storage. Our approach combined log-derived and
provider-published QoS data. When separate selections of VM, DB, and SaaS services were infeasible,
the system searched for integrated service offerings. The IP model then identified an optimal or near-
optimal assignment of services that satisfies workflow structure (sequential, parallel, conditional, loop),
user-defined constraints, and weighted QoS preferences. We implemented and evaluated our approach
on an EC2 instance. Experimental results show that the proposed space reduction techniques significantly
improve the IP solver’s response time.

3.6 Summary

In this chapter, we addressed service selection and composition by integrating quantitative QoS crite-
ria and qualitative transactional requirements. After reviewing related work, we proposed heuristic and
exact methods to ensure consistent and efficient composite services. The heuristic approaches formal-
ize transactional properties and user preferences, enabling local selection strategies that satisfy both QoS
and transactional constraints. For end-to-end composition, we used metaheuristic techniques based on
coloured Petri nets and developed utility-based models to rank candidate compositions. On the exact
methods side, we modeled service selection as a combinatorial optimization problem, introducing a fair-
ness objective through a maximum regret criterion. Finally, we leveraged Software Product Line engi-
neering and Feature Models to support dynamic, conversation-based service composition. The proposed
contributions help bridge the gap between performance optimization and transactional consistency in
service composition.

CHAPTER

RELIABILITY IN SERVICE CoMPOSITION EXECUTION

In this chapter, we tackle the issue of ensuring reliable execution of service compositions in the presence of failures.
Achieving reliability involves utilizing transactional mechanisms that support failure recovery either by restoring
the composition to its pre-failure state, or by transitioning it to a state from which normal execution can continue.
The recovery behaviour of a composite service is determined by the transactional properties of its component ser-
vices, which must undertake recovery actions when failures occur. As such, we first proposed an approach based on
forward recovery that replaces faulty services, and if replacement is not feasible, backward recovery is applied using
compensation. Next, we proposed an approach based on semantic and checkpointing recovery that relaxes the notion
of atomicity. In this approach, a failure results in the return of a snapshot of the most advanced partial state, allow-
ing users to accept or reject intermediate results. This chapter highlights the contributions presented in Cardinale et
al. [50, 51, 52]. We conclude the chapter with a brief overview of additional research work on concurrency control
in service composition execution, presented in El Haddad et al. [81], that we had the opportunity to study.

4.1 Motivations

Reliability is another cornerstone of successful service composition. Composite services are typically con-
structed from distributed components that run on heterogeneous systems, communicate over the Internet,
and are managed by independent and autonomous providers. Due to this distribution and the inherently
unreliable nature of the Internet, failures are expected during the execution of component services (Liu
et al. [146]). These failures may arise from service unavailability, execution errors, corrupted outputs, or
violations of predefined Service Level Agreements (SLAs). The failure of a single component can poten-
tially compromise the correctness of the entire composition, making failure recovery an important issue of
reliable service-oriented systems, and the central focus of this chapter. The goal behind the recovery is to
enable the composite execution continuity in case a component service becomes unavailable at runtime.

In service compositions, failure recovery mechanisms are used to guide the resulting faulty execution
towards a recovery state that is either an acceptable termination state from an end-user viewpoint, or a
state from which the execution can be continued normally. Research on failure recovery for composite web
services has been an active area focused on two main recovery strategies (Tartanoglu et al. [218]): backward
error recovery, and forward error recovery. The former involves undoing the effects of previously completed
services, often through compensation, when a failure occurs later in the composition. Backward recovery
restores consistency by undoing the effects of previously completed services, typically through compen-
sation. It aligns with transactional models, particularly those following ACID principles, where rollback
ensures atomicity and integrity. Forward recovery, in contrast, handles faults by guiding the system to
a new valid state without reversing past actions. This approach relies on exception handling techniques
such as retries, services substitution, or proposing alternatives to allow continued execution.

40 Chapitre 4. Reliability in Service Composition Execution

Requirements HotelBooking
(T1) ﬁ

Functional
input fromCity: Paris, toCity:Turin,
FlightBooking <:> 'O
(T2)

— BPMIN Notation —
O stan
TrainBooking S
(T3)

checkIn:26/06/2026, checkOut:01/07/2026,
guestNumber:1, customerName:myname,

Compensatable CarSharing
weight(time)= 0.5, weight(cost) = 0.5 (T4)

email : me@univ.fr,
objectif Minimize Time and Cost ® Exclusive gateway

cardNumber:Visal23, expiryDate:03/27
output Hotel Voucher, Flight e-ticket

Non-functional
preferences

Travel Arragement Workflow

Figure 4.1: TravelArrangement booking motivating example

Table 4.1: Available candidate component services for TravelArrangement

Task Service Response Time Execution Cost Transactional Property Provider
HotelBooking S11 15mn 1€ - HB1
(T1) S12 10mn 3€ compensatable HB2
FlightBooking S21 20mn 1€ - FB1
(T2) S22 10mn 10€ compensatable FB2
523 8mn 5€ retriable FB3
TrainBooking S31 20mn 5€ - TB1
(T3) S32 18mn 8€ - TB2
CarSharing 841 5mn 2€ compensatable CS1
(T4) S42 12mn 15€ - CSs2

To illustrate the need for failure recovery mechanisms, consider the following scenario based on the
previously introduced TravelArrangement composite service. Note that in this chapter, we consider only
services with transactional properties.

Motivating example. Suppose that our researcher requests the cheapest combination of hotel and flight
reservation services for a business trip to Turin. TravelArrangement then initiates the booking with services
512 and sp3 as the optimal composite service as they offer the lowest cost of 8€ and an execution time of
10 minutes. Suppose that the hotel booking service s15 completes successfully, but the flight booking s23
fails. The composite service cannot be fulfilled entirely, and two main recovery strategies can be applied:

e Backward recovery by restoring the state back: The hotel booking s;2 is cancelled using compen-
sation. The researcher is then free to restart the reservation from the beginning as no booking has
been kept.

e Forward recovery: TravelArrangement may retry with either the flight booking service so3 or with
a substitute service such as service sg. If the second booking attempt succeeds, then the booking
proceeds as planned. If not, TravelArrangement can propose alternative transportation service such
as the car sharing service s42 to maintain a valid and useful result.

In the previous Chapter 3, we presented our contributions to the selection and composition of trans-
actional services, enabling compositions to adhere to strict atomicity, adhering to the classical “all-or-
nothing” semantics, where either the entire composite service completes or none of its effects are visible.
This model is particularly effective when rollback is feasible and consistent state restoration is guaranteed
(i.e., via backward recovery). However, backward recovery prevents users from receiving any partial
results, while forward recovery may lead to long delays due to failure repair. In many cases, partial re-
sponses may still hold value, and strict atomicity can be impractical such as in irreversible actions (e.g.,

4.1 Motivations 41

sending confirmation emails) or when users have varying requirements and can accept different termina-
tion states of component services. To address these limitations, this chapter goes beyond “all-or-nothing”
semantics and introduces the concept of relaxed atomicity, which softens the “all-or-nothing” principle by
allowing partial execution outcomes, provided they preserve semantic correctness and meet user-defined
acceptance criteria. This is supported by advanced recovery strategies that adapt transactional principles
to more flexible and fault-tolerant execution models.

We now introduce the recovery concepts underlying composite service execution, which form the basis
of the contributions presented in this chapter. Following Liu et al. [145], the lifecycle of a component
service is divided into two phases: an active phase, during execution, and a completed phase, which
begins after execution ends. A failure of the service can occur during its active phase, but recovery may
be required in either phase. Depending on the service’s phase, different recovery strategies can be applied
to preserve relaxed atomicity:

o Backward recovery: it consists in restoring the state that the composition had at the beginning of the
composite service execution (i.e., all the effects produced by the failed service are semantically un-
done by roll-back, and the effects of previously executed services before the failure are semantically
undone by compensation). All transactional properties (p, a, ¢, pr, ar, and cr) allow backward
recovery. Backward recovery for a composite service implies relax atomicity.

e Forward recovery: it consists in repairing the failure to allow the failed service to continue its execu-
tion. Retriable properties (pr, ar, and cr) allow forward recovery. Retry and substitution are some
other techniques used to provide forward recovery. Forward recovery relies on exception handling
mechanism.

e Semantic recovery: after the successful end of a service composition execution, a semantic recovery
consists in reaching a state, which is semantically closed to the state the system had before the com-
position execution. Only compensatable transactional properties (cand cr) allow semantic recovery,
relaxing therefore the atomicity. This is also a backward recovery.

o Checkpointing: it consists of continuing the execution of the part of the composite service not affected
by a failure, while delaying the execution of the affected part. When a service fails, if there is no
possibility to repair the failure by forward recovery, instead of executing backward recovery, the
current execution state (snapshot) of the composite service is saved and the execution flow of the
composite can be pursued as much as possible.

Semantic recovery

Time

i Failure of
Begin of | a component End of

CS Successful ~ Service Cs
execution executed execution
component
Service

Take checkpoint
(CS execution state)

restart execution from snapshot

Figure 4.2: Failure recovery strategies for composite service CS

All recovery techniques discussed above support a relaxed “all-or-nothing” model to maintain sys-
tem consistency. As shown in Figure 4.2, this model is better described as “all-or-(almost)nothing” for

42 Chapitre 4. Reliability in Service Composition Execution

composite services, since users may observe partial results from successfully executed services before
compensation is applied. We propose checkpointing as an alternative that further relaxes atomicity while
preserving fault tolerance (Cardinale et al. [55], Rukoz et al. [197]). This enables an “all-something-or-
nothing” behavior: upon failure, a snapshot of the most advanced partial state is returned, allowing users
to accept or reject intermediate results. Unlike compensation, where users receive “(almost)nothing”,
checkpointing gives them partial control. The checkpointed composite service, comprising outputs from
completed services and unexecuted services due to failure, can later be resumed from the snapshot to
complete the execution and produce the full result.

In composite services, recovery may combine several failure recovery mechanims. By relaxing isola-
tion and atomicity, such mechanisms help maintain integrity and resilience under partial failures. These
strategies enable service compositions to function effectively in real-world scenarios, where strict rollback
is neither always feasible nor desirable. The rest of the chapter is organized as follows. In Section 4.2, we
outline state-of-the-art research work for failure recovery techniques in service compositions and sum-
marizes our contributions in this area. In Section 4.3, we propose an Petri net-based failure recovery
approach that combine both backward and forward recovery, while in Section 4.4, we propose an graph-
based failure recovery approach that combine both semantic recovery and checkpointing. In Section 4.5,
we overview additional research work about concurrency control during composite service execution that
we had the opportunity to study. In the last section, we conclude the chapter by summarizing our findings.

4.2 State-of-the-art and Contributions

Over the past two decades, numerous studies have addressed reliability and failure recovery strategies
(Gao et al. [94], Immonen et al. [119], Vargas-Santiago et al. [228]) in service composition. These efforts
have evolved from rule-based static approaches to modern predictive and self-healing systems. Next, we
outline the evolution of these approaches with particular emphasis on transactional-based ones.

Early mechanisms relied on rule-based and exception handling mechanisms to achieve forward error
recovery and ensure fault tolerance in service compositions (Brambilla et al. [39], Casati and Cugola [57],
Friedrich et al. [88], Hagen and Alonso [109]). These approaches rely on explicitly defined recovery
rules, often embedded within orchestration languages such as BPEL, through try-catch-finally blocks and
compensation handlers, to manage failures during execution. Service substitution was limited to prede-
fined alternatives, and compensation was employed to undo previously executed operations. However,
these strategies were inherently reactive, requiring prior anticipation of potential faults, and thus unable
to handle runtime failures or dynamic execution contexts.

To overcome the limitations of early failure recovery methods, a new wave of approaches introduced
transactional models that support both forward and backward recovery. By leveraging the transactional
properties of component services, these approaches enable fault-tolerant service compositions by defin-
ing service behavior in case of failure and specifying the corresponding recovery actions. Among them,
Portilla et al. [195] proposed atomicity contracts, grouping services to ensure collective success or failure,
along with recovery strategies based on service transactional behavior. Zhao et al. [263] introduced re-
laxed atomicity, where a composition is transactionally correct if all its components reach a unanimous
outcome or a “completed accepted” state, softening the strict “all-or-nothing” principle. Additional cor-
rectness criteria have been formulated through transactional coordination protocols (Pires et al. [192]), or
explicit fault-handling mechanisms (Liu et al. [145]). While some approaches rely on exception handling
or on transactional properties, some others combine both. Among these, Liu et al. [144, 145, 146] devel-
oped a series of taxonomies to classify services by their transactional capabilities. They first distinguished
between atomic, quasi-atomic (compensatable), and non-atomic (irreversible) services, later refining this
into atomic, semantic-atomic, weak-atomic, and pivot services based on lifecycle phases and support for
compensation or two-phase commit (2PC). Lastly, they proposed a two-dimensional model combining
compensatable and cancellable properties, resulting in the FACTS framework. FACTS enables hybrid fault
tolerance by integrating exception handling with relaxed atomicity, using declarative Event-Condition-
Action rules and a scalable commit protocol inspired by 2PC. Several complementary approaches fol-
lowed. Maamar et al. [161] introduced a forward recovery approach based on context-aware policies en-
capsulating service transactional behavior. Schéfer et al. [200] extended the Web Services Coordination
protocol to support flexible compensation via service replacement and additional invocations. Ben Lakhal

4.2 State-of-the-art and Contributions 43

et al. [133] proposed the FENECIA framework, classifying services by vitality and compensation prop-
erties (e.g., vital-compensatable, non-vital non-compensatable). FENECIA is based on WS-SAGAS trans-
actions and supports forward recovery via retry or replacement, as well as backward recovery via com-
pensation. If a vital service fails and cannot be recovered, the entire composition is aborted; otherwise,
execution may proceed. Later, Cardinale and Rukoz [54] proposed a framework for the reliable execu-
tion of transactional composite services using Coloured Petri Nets (CPN). Their approach handles service
failures based on transactional properties modeled within the CPN, supporting backward recovery (via
compensation), forward recovery (via retry or replacement), and semantic recovery. Failed services are
retried when possible; if retry fails, they are replaced with transactional equivalents; if replacement also
fails, compensation is applied. This work was later extended by Angarita et al. [14], who introduced the
FaCETa framework, combining forward recovery through service replacement and backward recovery
using a CPN-based unrolling algorithm.

For certain queries, partial results can still be valuable to users, underscoring the need for recovery
strategies that provide usable output even in the event of failure. Checkpointing offers such a strategy by
enabling partial result delivery and supporting replication as a proactive mechanism.Using checkpoint-
ing, Rukoz et al. [197] proposed an approach where, upon failure, the unrolling process of the CPN con-
trolling the execution of a transactional composite service is checkpointed, allowing execution to continue
as far as possible. This enables users to receive partial results as they become available and, if needed, to
re-submit the checkpointed Petri net to resume execution from the saved state.

Recent recovery approaches in service compositions leverage machine learning for proactive fault tol-
erance through failure prediction (Singh et al. [208]). Notably, Alhosban et al. [8] proposed the SFSS
framework, which predicts failures based on service fault history, execution time relative to the overall
composition, and service importance in the compositon. SFSS enables preemptive planning when high
failure probability is detected, by selecting the optimal execution plan using a scoring function. El Ghon-
dakly et al. [83] introduced a deep learning-based method for defect localization and prediction, using
convolution neural network (CNN), recurrent neural network (RNN), and a hybrid CNN-RNN model.
Their approach identifies faulty services in terms of number, location, and timing. While RNNs offered
faster predictions, the method did not reduce computational complexity.

Positioning of contributions.

This section presents my contributions to correct and dependable execution of service composition, with
further details in the following sections. It focuses on failure recovery strategies that ensure reliability by
leveraging transactional properties of component services, along with additional work on concurrency
control.

For failure recovery, as a foundational step in Cardinale et al. [50] (Section 4.3), we proposed a frame-
work based on coloured Petri nets to model both the execution and compensation flows of transactional
composite web services whose components locally optimize QoS. The framework supports forward and
backward recovery: in case of failure, forward recovery is attempted via re-execution or service substitu-
tion; if that fails, backward recovery is applied through compensation to preserve consistency. This work
aligns with prior efforts by Angarita et al. [14] and Cardinale and Rukoz [54], contributing to the class of
CPN-based recovery techniques.

Expanding on this, in Cardinale et al. [51, 52] (Section 4.4), we focused on transactional aspect and
introduced the notion of fuzzy atomicity, which relaxes the classical “all-or-nothing” execution model.
In Cardinale et al. [51], by integrating transactional properties with checkpointing, we proposed a model
supporting partial execution results in the presence of failures by replacing the classical “all-or-nothing“with
a more flexible and realistic fuzzy “all-something-or-(almost)nothing” execution model. In case of failure
of a component service, compensation allows to semantically undone the effects of component services
that have been executed before the failure. Checkpointing mechanism allows to provide partial responses
to a query, in case of failure, along with a snapshot of the composite service execution, in order to be able
to execute later the part of the composite service that cannot be executed after the failure. This approach
enhances user satisfaction by allowing partial but meaningful responses when total recovery is infeasi-
ble, complementing checkpointing-based recovery of Rukoz et al. [197]. Building upon this foundation,
in Cardinale et al. [52], we further enhanced our fuzzy atomicity model to introduce greater expressive-

44 Chapitre 4. Reliability in Service Composition Execution

Steps

(51, 52] [50]
Recovery - G e

Composition
Selection / Heuristic | | NFP
QoS 7 Qos /" QoS
or /and * and
w TP / Trust
Exact g

/ /
7

Optimization

Figure 4.3: Contributions to Failure Recovery in Service Composition Execution

ness and user-centric control. Our refined model allow users to better specify their desired outputs and
to consider the state of the composite service execution. It also allows to relax the retriable transactional
property, which is difficult to ensure in high dynamic environments. This refined framework allows for
adaptive recovery strategy selection including forward, backward, semantic, and checkpointing depend-
ing on the minimum user requirement, the composition state, and the failed service, echoing trend in
self-healing recovery.

For concurrency control, our work in El Haddad et al. [81](Section 4.5) deal with concurrency between
composite services while respecting relaxed isolation. A composite service, considered as an open nested
transaction, may reveal partial results that can be used by other services. We proposed a decentralized
serialization graph mechanism built on an optimistic protocol and hierarchical composition structure to
ensure globally correct execution, aligning with the needs of scalable and adaptive service orchestration.

4.3 Forward and Backward Recovery

The content of this section is adapted from Cardinale et al. [50] work carried out in collaboration with colleagues
from Simén Bolivar University and Université Paris Dauphine-PSL

Overview

This work [50] builds on our previous work by Cardinale et al. [48] (see Chapter 3, Section 3.3.2) where
we extended the Colored Petri Net (CPN) formalism to incorporate non-functional component service
properties and to model composition phases.

In the first phase, the COMPOSER module automatically selects services and generates their execution
flow as a CPN. This selection is guided by an unrolling algorithm that uses QoS and transactional param-
eters to prune the search space and ensure optimal and reliable compositions. Two CPNs are generated:
one for the transactional composite service that meets functional, QoS, and transactional requirements,
and another CPN for the compensation flow in case of failures. In the first CPN, colors represent transac-
tional properties, while in the second, they track execution states for failure handling.

In the second phase, the EXECUTER module carries out the service execution based on the generated
CPNs. It ensures fault-tolerant execution of a transactional composite web service by: (i) following the
specified sequential/parallel flow, (ii) applying forward recovery by substituting faulty services when
possible, and (iii) performing backward recovery via compensation if substitution fails.

4.3 Forward and Backward Recovery 45

Next, we describe our combined forward and backward recovery mechanism through the COMPOSER
and the EXECUTER modules.

The COMPOSER

The firing of a transition of a WSDN corresponds to the selection of a service, which will participate
in the composite service allowing to answer the user query). We define the marking of a WSDN, the
fireable property of a transition, and the firing rules in such way we obtain, at the end, a transactional
composite web service (see Chapter 2, Section 2.3). Thus, given a user query @ and a WSDN, the selection
process will create a CPN, called W.SDNg, sub-part of WSDN, which satisfies () and its corresponding
compensation CPN, called BR_W SD N, representing the backward recovery process as follows:

Definition 4.3.1. A WSDN, is a 4-tuple (Aq, Sq, Fq.&q), where:
0AQ§A|IQ§AQ/\OQ§AQ}
[} SQ Q S}

o Fp: (Ag x Sg)U (Sq x Ag) — {0,1} is a flow relation indicating the presence (1) or the absence
(0) of arcs between places and transitions defined as follows:
Vs € Sq,(Ja € Ag | Fg(a,s) =1if F(a,s) =1)and Vs € Sg, (Ja € Ag | Fo(s,a) = 1if F(s,a) = 1);

e &g isa color function such that &g : S — Zs and Xg = {p, pr, a, ar, ¢, cr} represents the TP of s € S.

The global transactional property of WS DN ensures that if a component service, whose transactional
property does not allow forward recovery fails, then all previous executed services can be semantically
recovered by a backward recovery. For modeling the compensation flow of a transactional composite web
service , we formally define BR_W SDN, as follows:

Definition 4.3.2. A BR_W SDN,, associated to a given WSDNg=(Aq, Sq, Fg.£q), is a 4-tuple (4’, &,
F~1,¢), where:

e A’is a finite set of places corresponding to the
W SDNg places such that: Va' € A’ 3a € Ag associated to ¢’ and o’ has the same semantic of a.

e 5’ is a finite set of transitions corresponding to the set of compensation services in W.SDNg such
that: Vs € Sg, o(s) € {c,er}, 3s’ € S’ which compensate s.

o F71:(Ag xSg) U (SoxAg)— {0,1}is a flow relation establishing the restoring order in a backward
recovery defined as: Vs’ € S’ associated to s € S, 3 a’ € A’ associated toa € Ag | F~1(d/,s') =1
& F(s,a) =1andVs' € 5,3d € A | F71(s,d/) =1 F(a,s) = 1.

e (is a color function such that {(: S’ — X and ¥ = {In,Ru, Ez,Co, Fa, Ab} represents the
execution state of s € Sg, and s’ € S’ is its compensation service (In: initial, Ru: running, Ex:
executed, Co: compensated, Fa: Failed, and Ab: abandoned).

We consider that a service should be selected at most once, therefore the corresponding transition in
WSDN should be fired only one time. As a consequence, when a transition s is fired, tokens are added to
its output places and all tokens are deleted from its input places (except from places that belong to Og).
If s is compensatable (Cs(s) € {c, cr}), its corresponding compensation service, s’, has to be added in the
compensation CPN. Each service s includes in its semantic description the corresponding reference to its
compensatable service s’; s and s’ are registered in the same registry. More formally, we defined the firing
rules as follows:

46 Chapitre 4. Reliability in Service Composition Execution

Definition 4.3.3. The firing of a fireable transition s for a marking M defines a new marking ', denoted
as M = M’, such that :

1. Tokens are added to the output places of s depending on the color of s and on the color of the tokens
contained by the input places of s, according to the following rules:
if (Jz € (*°s)|a e M(z)),thenVy € (s*), M'(y) « M'(y) U{a}
elseif (3z € (°s) | ar € M(z)), then Vy € (s*), M'(y) + M'(y) U {ar}
elseif [(3z € (°s) | c € M(x)) A (Cs(s) € {p,pr,a,ar})],
then Vy € (s°*), M'(y) + M'(y) U {a}
elseif [(Fz € (°s) | c € M(x)) A (Cs(s) € {c,cr})],
then Yy € (s*), M'(y) < M'(y) U{c}
else /*n this case: Va € (°s), M(z) € Bag({I,cr})*/
Yy € (s*), M'(y) + (M'(y) UCs(s)) if Cs(s) € {a,ar,c,cr},
M'(y) « (M'(y) U{a}) if Cs(s) = p, and M'(y) + M'(y) U {ar} if Cs(s) = pr

2. Tokens are deleted from input places of s, if they do not belong to Og:
Vo € (°s — Ogq), M(z) « 0,

3. Color Cyy of the resulting (WSDN, M') is updated, according to the following rules:
if (Cpy € {I,cr}) and Cs(s) = pthen Cpyr < a
else if (Cps € {I,cr}) and Cs(s) = pr then Cpyr < ar
else if (Cps € {I,cr}) and Cs(s) € {a, ar,c,cr} then Cppr < Cs(s)
else if (Cps = ¢) and Cs(s) € {p, pr,a,ar} then Cpr < a
else Cppr < Cus

4. sand its input and output places are added to WSDNg=(Aq, Sq, Fg,&q) as:
Ag +— Ag U ®sUs® Sg <+ Sq U {s}; Fgla,s) < 1,Ya € *s; Fg(s,a) + 1,Va € s*

5. If Cs(s) € {c,cr}, its compensation WS s’ and its input and output places are added to BR_W SDNg =
(A, 8", F~1,(), according to the following rules:
A+ Au{d|TJacdgrnaec®svacs®) S« SU{s} Fld,s) =1& Fy(s,a) = 1;
F=i(s,d) =1« Fg(a,s) =1

Associated to W.SD N, there exists a firing sequence o = {s1,..., s, | s; € Sg}, suchthat: Mg 2 Mp,
where Mg, is the initial marking and My denotes the desired marking in which Yo € Og, Mp(0) # 0.
When several transitions are fireable, to select which transition has to be fired, we use the quality measure
presented in Chapter 3, Section 3.3.2, Definition 3.3.1.

Based on the presented formalism, we have implemented the unrolling algorithm to automatically
generate WSDNg and BR_W SDNg.

The EXECUTER

Once WSDNg and BR_W SDN, are obtained, the transactional composite web service have to be exe-
cuted ensuring a consistent state of the system in presence of failures. The execution process is managed
by algorithms that execute the CPNs. We formally describe the execution process in following definitions.

The marking of a WSDNg or BR_W SDN, represents the current values of attributes that can be
used for some component services to be invoked or control values indicating the compensation flow, re-
spectively. A Marked CPN denotes which transitions can be fired.

Definition 4.3.4. A marked executable WSDN =(A4, S, F,§) is a pair (CPN,M), where M is a function
which assigns tokens (values) to places such that Va € A, M(a) € N.

4.3 Forward and Backward Recovery 47

Definition 4.3.5. A marking M enables a transition s iff all its input places contain tokens such that:
Vo € (°s), M(z) > card(®z)

During execution in W.SDNg and BR_W SD Ny, a transition (i.e., service invocation) is fireable only if
all its predecessor transitions have fired. Execution depends solely on the number of tokens in places, not
their colors. While colors are used in transitions, only token counts matter in places; sufficient to enforce
correct sequential and parallel execution, preserving the global transactional property.

Example 4.3.1. As shown in Figure 4.4, wss needs two tokens in a3 to be invoked. Since a3 is produced
by both ws; and wss, wss must wait for both to complete. Although ws; has already placed a token in as,
and wss is still running, firing wss prematurely would result in a parallel execution with wsz, which may
violate their intended transactional order. Therefore, ws; must wait until both predecessors finish, after
wss and wsy can be executed in parallel.

This example illustrates how data flow constrains execution flow to maintain transactional consistency,
though in some cases, both flows may naturally align.

Figure 4.4: Example of Fireable Transitions

The execution of a transactional composite web service is driven by an algorithm executing its cor-
responding WSDNg=(Aq, Sq, Fg,&q). To enable backward recovery, execution traces are recorded on
BR_WSDNg=(4', 5, F~1,(). Execution begins with an Initial Marking: a token is added to each place
representing an input of Q (Va € (Ag NIg), M(a) =1,Va € (Ag — Ig), M(a) = 0), and the state of all
transitions in BR_W SDNj, is set to initial (Vs' € S’, {(s") < In). Firing a transition in W.SDN, corre-
sponds to the execution of a service s which participates in the composition. While s runs, the state of
its corresponding s’ in BR_W SD N, is marked running (((s") <— Ru). Once s completed, s’ is marked
executed (((s') < Ex), others transitions become fireable, and the following firing rules are applied.

Definition 4.3.6. The firing of a fireable transition s for a marking M defines a new marking A/’, such
that: all tokens are deleted from its input places (Vz € *s, M(x) = 0), if the {(s) € {c, cr}, the state of
its corresponding s’ in BR_W SDNq, is set to running({(s’) < Ru), and the service s is invoked. After s
finishes, tokens are added to its output places (Vx € (s°*), M(z) = M(x) + card(z®)), and the state of its
corresponding s’ in BR_W SD N (if it exists) is set to executed({(s') < Ex).

If a service s fails and £g(s)e{pr, ar, cr}, it is re-invoked until it successfully finishes (forward re-
covery). Otherwise, its corresponding s’ in BR_W SDNg (if present) is marked as failed (¢(s") < Fa),
triggering backward recovery. This requires compensating all previously executed services in reverse or-
der; parallel execution services can be compensated in any order. Backward recovery halts the execution

48 Chapitre 4. Reliability in Service Composition Execution

of WSDNg and the compensation process is initiated over BR_W SDNq with its Initial Marking (i.e.,
tokens are added only in input places of BR_W SDNg). The execution of BR_WSDNg then follows
Definition 4.3.7 and Definition 4.3.8.

Definition 4.3.7. A marking M enables a transition s’ iff all its input places contain tokens such that
Va' € (°s"), M(a') # 0, A ((s") ¢{Co, Ab}.

Definition 4.3.8. The firing of a fireable transition (see Defintion 4.3.7) s’ for a marking M defines a new
marking M’, such that:

o if {(s") = In, ((s') + Ab (ie., the corresponding s is abandoned before its execution),

o if ((s') = Fa, ((s') + Ab (ie., the corresponding s is abandoned, it has failed),

o if ((s') = Ru, ((s’") + Co (in this case s’ is executed after s finishes, then s is compensated),
o if ((s') = Ex, ((s") < Co (in this case s’ is executed, i.e., s is compensated),

o tokens are deleted from its input places (Vx € *s’, M(x) = M(z) — 1) and tokens are added to its
output places as many successors it has (Va € (s'®), M(z) = card(z®)).

Figure 4.5 illustrates a backward recovery scenario. The marked W SDN, in Figure 4.5(a) and the
corresponding BR_W SDNg, in Figure 4.5(b) represent the execution state at the moment ws, fails. The
execution of WS DN, is halted, and the initial marking on BR_W S DN, is set to start its execution process
(Figure 4.5(c)). After firing wsf and wsf to compensate wss and wss, and abandoning wsy and wsy (the
former failed; the latter wasn'’t yet invoked), a new marking is produced (Figure 4.5(d)) where ws} and
wsy become fireable and can be executed in parallel. Only compensatable services have corresponding
transitions in BR_W SDNg; for instance, wss and wss (and their outputs a1o and a12) are excluded as
they are not compensatable.

Failures occurring late in execution can lead to high resource waste due to compensation. How-
ever, ensuring full retriability for forward recovery is challenging. To address this, we proposed a for-
ward recovery approach based on service substitution (Cardinale and Rukoz [53]. This leverages service
classes (Azevedo et al. [21]), which group semantically equivalent services (i.e., services with the same
functionality but differing in input and output attributes, transactional properties, and QoS attributes).
These classes are assumed to be predefined and described semantically in the service registry. Upon fail-
ure, if a service is not retriable, a substitute is automatically selected and invoked.

To this end, we defined functional substitute and exact functional substitute as follows:

Definition 4.3.9. Let SC be a service class, if s, s* € SC, we say that s is a functional substitute of s*
(denoted as s = s*), if (®s*) C (*s) A (s*)® D (s°).

Definition 4.3.10. Let SC be a service class, if s, s* € SC, we say that s is an exactly functional substitute
of s* (denoted as s =gp s*), if (°s*) = (°s) A (s*)® = (s°).

In a service class, the functional equivalence is defined according to the services input and output
attributes. A service s is a functional substitute of another service s*, if s* can be invoked with at most the
input attributes of s and s* produces at least the same output attributes produced by s. They are exactly
functional substitutes if they have the same input and output attributes.

4.3 Forward and Backward Recovery 49

a’, a/7
ws'; Ay
{(ws')=F Clws')=1
ws's
")=E e
E(ws)=c E(ws J=cr E(ws)=pr Sl Slws')=E
(a) Marked WSDN_ when ws, fails (b) State of BR_WSDNQ when ws, fails
a’[a,7 a'l . WS’_; a/7
b0
{(ws')=C
s’ a', f a’s s, a',
{(ws')=F C(ws')=1 Qows')=A G(ws')=A
6 ws's a', y s a'%
{(ws')=E {(ws')=E {(ws")=E {(ws')=C
(c) Initial Marking of BR_WSDN_ (d) Marked BR_WSDNQ after ws', and ws', were
invoked and ws,and ws_ were abandoned
Figure 4.5: Example of backward recovery
Example 4.3.2. Several functional equivalence examples are illustrated in Figure 4.6. For instance, ws; =p
wsa, however wsy #p ws;, because ws; does not produce output a5 as wsy does. ws; =p wss, wss =p

wsy, and also ws; =gr wss.

Figure 4.6: Example of equivalent services

To guarantee the global transactional property of the transactional composite web service , a service
s can be replaced by another s* if the latter can behave as s in the recovery process. Hence, if £o(s)=p (s
only allows backward recovery), it can be replaced by any other service since all transactional properties
allow backward recovery. If {g(s) = pr, it can be replaced by any retriable service (pr,ar,cr), as all of them
allow forward recovery. An a service allows only backward recovery, then it can be replaced by another
service with backward recovery capability. A cservice can be replaced by a service that provides semantic
recovery as ¢ and cr services. While a ¢r service can be only replaced by another c¢r service as it supports

50 Chapitre 4. Reliability in Service Composition Execution

forward, backward, and semantic recovery. We therefore define the notion of a transactional substitute as
follows:

Definition 4.3.11. Let SC be a service class, if s, s* € SC, we say that s is a transactional substitute of s*
(denoted as s =7 s*):

o if (6(s) = P Eq(s”) € {p,prya,ar,c,cr}) A (s =r 5%,
o if (6(s) = pr,Eq(s*) € {pryar,cr}) A (s =p 5°),

o if (Eo(s) = a,60(s") € {a,ar,c,er}) A (s =p 57),

o if (q(s) = ar,&q(s”) € {ar,cr}) A (s = %),

o if (6(s) = ¢,Eq(s%) € {c,er}) A (s =gr %),

o if (6(s) = er.&q(s™) = o) A (s =gr 5°).

Example 4.3.3. Several transactional substitute examples are given in Figure 4.6. For instance, ws; =1 wsa,
because ws; =r wsy and &g(ws2) = cr, then wsy can behave as a pr WS; however ws; #r wss, even
ws1 =p wsy, because as {g(ws3) = p, ws cannot behave as a pr web service.

Transactional substitute definition allows services substitution in case of failures as defined below:

Definition 4.3.12. Let WSDNg=(Aq,Sq, Fq,&q) be the CPN allowing the execution of a transactional
composite service that satisfies the Query Q = (Ig, Oq,Wq,Tg), and BR_WSDNg=(A',S', F~1,() its
corresponding backward recovery CPN. In case of a service s € Sg fails, it can be replaced by another s*,
if s =7 s*, and the following actions proceed:

1. Sg + SquU{s*};

2. Ya € *(s*), F(a,s*) = 1AVa € *s, F(a,s) = 0;
3. Ya€s* F(s*,a)=1,F(s,a) =0;

4. Sg + Sg — {s};
5

L if &o(s) € {c,er}, s € S’ is replaced by s'* (it compensates s*) applying 1, 2, 3, and 4 on
BR_WSDNg.

When a substitution occurs, the faulty service s is removed from W SDNg and replaced by s* while
preserving the original sequential relation defined by the input and output attributes of s. For com-
pensatable services, exact functional substitutes is a must to avoid altering the compensation flow in
BR_WSDNg. The goal is to complete the transactional composite web service execution with the same
properties as the original. Figure 4.7(a) shows a CPN registry; Figure 4.7(b) a W SDNg; and Figure 4.7(c)
the updated W SDNg after replacing ws; with ws,. Note that as, produced by ws, but not originally by
ws1, is excluded to preserve the original execution flow.

When in a service class there exist several service candidates for replacing a faulty s, it is selected the
one with the best quality measure. The quality of a transition depends on the user query @ and on its QoS
values. Services substitution is done such that the substitute service locally optimize the QoS. A similar
quality measure used by the COMPOSER is used during the execution, in order to keep the same heuristic
to select substitutes.

4.4 Semantic and Checkpointing Recovery 51

(b) WSDNQ -ws, fails (c) ws, substitute ws,

Figure 4.7: Example of services substitution

In summary, when a service s fails, the recovery action depends on its transition color ({g(s)): (i) if
€0 (s) is retriable, s is re-invoked until successful (forward recovery); (ii) if not retriable, a transactional
substitute s* is selected and execution continues (forward recovery); (iii) if no substitute exists, the cor-
responding s’ in BR_W SDN, (if it exists) is marked failed ({(s') <— F), triggering backward recovery.

4.4 Semantic and Checkpointing Recovery

The content of this section is adapted from Cardinale et al. [51] and [52] work carried out in collaboration with
colleagues from Simén Bolivar University and Université Paris Dauphine-PSL

Overview

In this work, we proposed a fuzzy model to measure relaxed atomicity in composite service execution. By
leveraging transactional properties of services and checkpointing mechanism, the model softens the strict
“all-or-nothing” guarantee into an “all-something-or-(almost)nothing” (called fuzzy “all-or-nothing”) be-
havior. Given a user query defining available inputs (e.g., name, date), expected outputs (e.g., flight ticket,
climate prediction), and the acceptable fuzzy atomicity (i.e., minimum acceptable results), our model com-
putes a fuzzy atomicity score based on the outputs produced and services successfully executed. Depend-
ing on the score value, different recovery techniques could be envisaged in case of failures to ensure a
fuzzy atomic (i.e., fuzzy “all-or-nothing”) execution of the composite service.

In Cardinale et al. [51], we introduced an atomicity model that quantifies the relaxation of the “all-
or-nothing” property based on user-defined output acceptability thresholds. In Cardinale et al. [52], we
extended the model to i) improve user expressiveness in output preferences and ii) relax the retriable
property, which is challenging to guarantee in dynamic environments such as Cloud platforms.

52 Chapitre 4. Reliability in Service Composition Execution

(O inputs/outputs lo=(a,a,a) [inputs/outputs lg=(a a,a)

O services Oq=la,a,a,) O services Oq=la,,a,.a,)
Figure 4.8: Atomic C'Sq: at least a p service in Figure 4.9: Compensatable C'Sg: all component
the composition services are ¢

Relaxing atomicity by compensation

Transactional properties are useful to guarantee reliable composite service execution and to ensure the
whole system consistent state even in presence of failures.

In the event of failures, backward recovery provides “nothing” or “(almost)nothing” in case of com-
pensation. Figure 4.8 shows an atomic composite service C'Sg for a query with I = {a1, as, a3} and
Oq = {a10, @11, a12}. Retriable services are assumed to succeed, enabling forward recovery. Only ¢ and
p services (s1, s2, and s4) may fail without repair. If a parallel ¢ service fails (e.g., s1 or s2), the other can
be compensated. If the p service (s4) fails, its preceding sequential services (si, s2) and parallel services
(ss3, s5, s¢) must be compensated. In a compensatable composite service, any unrecoverable failure leads
to compensation of all related sequential and parallel services, yielding semantic recovery with limited
output “(almost) nothing”). Figure 4.9 illustrates such a compensatable C'Sg.

In both compensatable retriable and atomic retriable composite services, the retriable condition en-
sures successful execution, guaranteeing the user receives all desired outputs even in the presence of
failures. Once all services complete successfully, users obtain 100% of their intended results. However, if
a failure occurs, execution halts completely even if unaffected services could still produce partial outputs.
This motivates the idea of relaxed atomicity, where successfully executed components (with outputs) are
considered alongside failed ones. Unexecuted services may still be invoked later as we will present below.

Relaxing atomicity by checkpointing

Suppose the atomic composite service in Figure 4.8 reaches the execution state shown in Figure 4.10 when
s4 fails. Although s4 cannot be repaired, execution can still proceed with unaffected services. Only s7 and
sg depend on sy, so they are the only ones impacted. Assuming no further failures, the output a9 can
still be produced.

Figure 4.11 shows the resulting state after executing all unaffected services and successfully obtaining
a1o. The red subgraph highlights the remaining part of the composite service (i.e., services that were not
executed because they depend on the failed s, or its outputs). This subgraph can later be re-executed to
recover the missing outputs.

To formalize our approach, we define key concepts of the checkpointing process in Definitions 4.4.1
and 4.4.2, corresponding to local and global snapshots.

Definition 4.4.1. A Local Snapshot is a 2-tuple representing the state of a service s; in C'Sq, denoted as
LS,,=<Ins,, Out,,>, where:

o In,, represents the values of inputs of I, that can be used to invoke s;. Then: In,, = {(i,v) |
i € I, and v is the value of input i}, where v #NULL, if (i€ Ig) or (3s; € CS | i € O, and s;

4.4 Semantic and Checkpointing Recovery 53

D () inputs/outputs lg=(a,a,a)
inputs/outputs log=(a ,a,a. re

P! P o=(e,a,a) @ nNon generated output Oq=(a,,a,.a,,)
O Services still not, Invoked DO:(“,.,-"'J._.-“ . . Executed services . Non executed services

. Executed services

Figure 4.10: C'Sg when s4 fails Figure 4.11: Checkpointed C'Sg

was successfully executed) (i.e., the value is part of I or it was produced by a service s; executed
before s;); or v = NULL otherwise (i.e., the value is not in Ig and it is not yet produced by a
previous service).

o Out,, represents the values of outputs of O, produced by the execution of s;. Then: Outs, = {(o,v) |
o0 € Os, and v is the value of output o}, where V(o,v) € Out,,, v # NULL, if s; has been successfully
executed; or Outs, = (), if s; has not been executed.

To illustrate this definition, note that for service sg in Figure 4.11, one input has NULL value (that one
produced by s4) and the other has a value produced by s5, while Out,, = 0.

Definition 4.4.2. A Global Snapshot (GS) is a 3-tuple representing the set of data necessary to restart the
execution of a C'Sg, denoted as GScs,=<LScs,,Ger,Ina,, >, where:

e LScs, = {Ls,

s; € CSg} is the union of all local snapshots of the CS;
o G,y is the subgraph of the C'Sg that could not be executed; and

o Ing,, is the set of inputs needed to restart this subgraph G..

For the CSg shown in Figure 4.11, the subgraph G, that could not be executed is depicted in red.
Ing,,, the information needed to restart this subgraph is In,,, which is equal to Outs,, and In,,, with
Ing, = Outs, U{(j, NULL) | j € Os,}. Inshort, Ing,, = {Outs, | Outs, = Ins,,Outs, U{(j, NULL) |
J € Og,}}.

Fuzzy atomicity and recovery strategy

From the user’s perspective, submitting a query @ = (Ig, Og) results in one of three outcomes: (i) full
output (Og) is received, (ii) no or minimal output if failures are unrecoverable (“nothing” or “(almost)
nothing”), or (iii) partial output (“something”) when checkpointing is used. Our approach incorporates
user-defined acceptable fuzzy atomicity, specified either as a minimum percentage of required outputs (e.g.,
66% of the total outputs) or by marking outputs as essential (e.g., an e-book) or optional (e.g., a recom-
mended list). Based on this preference, the system can adaptively select an appropriate recovery strategy,
enabling a flexible, self-adaptive fuzzy“all-or-nothing” execution.

We next introduce our model for measuring fuzzy atomicity and the algorithm that selects the most
suitable recovery method based on the system state and user preferences (acceptable fuzzy atomicity).

54 Chapitre 4. Reliability in Service Composition Execution

Fuzzy atomicity model. To consider user preferences, the definition of a query is redefined as follows.

Definition 4.4.3. A Query () can be expressed as Q = (Ig,Oq, f) or Q = (Ig, Og = OstgUOopg), where
Iy, is the set of input attributes (whose values are provided by the user); Og is the set of output attributes
needed by the user (whose values have to be produced); f is the acceptable fuzzy atomicity expressed as
a percentage of the minimum desired outputs; Ostg is the set of output attributes strictly needed by the
user; and Oopg is the set of optional output attributes that the user expects. Note that Og = Ostg U Oopg
and Ostg () Oopg = 0.

Note that, if users do not want to relax atomicity, they can express f = 1 or indicate all their desired
outputs as strict.

Before presenting our model, we outline key assumptions that support the definition of the proposed
fuzzy atomicity property:

1. The system S consists of data managed by the services composing C'Sgp, where each component
service ensures the ACID properties over its local data,

2. Before executing CSq, the system is in a consistent state, denoted S;yitiq;, Where all component
services maintain local consistency,

3. Composite service C'Sg is free from deadlocks and compliant with transactional rules (Table 2.1),
4. Execution of each component service, as well as C'Sg as a whole, complies with ACID properties,

5. Each component service s; is transactional. If s; has a compensation service s}, it also ensures con-
sistency even under failure. Let O}, denote the outputs produced by s;, and let C'Sf, be the set of
compensating services for the compensatable components of C'Sg.

Definition 4.4.4 specifies what constitutes a correct execution required to formally define the fuzzy atom-
icity property.

Definition 4.4.4. Given a system S in a consistent initial state (S;nitiar), the execution of a composite
service, C'Sq, is successful i f f after its execution the final state of S’ (Sfina:) is also consistent (meaning
that all components of C'Sg have been successfully executed or compensated).

When a composite service C'Sq is executed in response to a query Q = (Ig,Og, f) or Q@ = (Ig,0¢g =
Ostg U Oopg), three execution states can be identified: Internal Execution State that refers to the state of
C'Sg based on the execution status of its component services (Definition 4.4.5), System State that represents
changes made to the system S through C'Sg (where each successfully executed service or its compensa-
tion may modify S, Definition 4.4.6), and User Execution State that corresponds to the user’s perspective,
reflecting the portion of desired outputs (Og) received (Definition 4.4.7).

Definition 4.4.5. A composite service C'Sg that satisfies a query Q = (Ig,Oq, f) or Q@ = (Ig,0q =
Ostg U Oopg) can be in one of the following internal execution states:

1. CSstate=1: initial, when C'Sy, starts its execution.

2. CSsiate=FE: executing, when at least one of its component services is still running.

3. CSstate=SF: successfully finished, when all its components services are successfully finished.
4. CSstqte=C" compensating, when a compensation of at least one of its components is started.
5

. CSstate=FC: finished compensated, when all successfully finished services were compensated.

4.4 Semantic and Checkpointing Recovery 55

6. CSstate=5D: stand-by, when some services are successfully finished, while others were not executed
because of a failure. In this case, a Global Snapshot is obtained.

The state of the system depends on the internal execution state of the C'Sg and on the produced out-
puts. Below, we present state changes defined using the following standard rule form, where state R is
reached iff conditions C; to C,, are verified :

Cy, ... Cy,
Reached state R

Definition 4.4.6. The system S can be in one of the following consistent states (Systemstqte) during the
execution of a C'Sq that satisfies a query Q = (Ig,Oq, f) or Q = (Ig,0g = Ostg U Oopg):
1. Initial state:

CSstate =/
Sinitial

2. Partial state:

C’Ssmte = F and U Osi

5;€CSq

>0

Spartial

3. Final with success:

CSSmte = SF and (U Osi D) OQ)

5:€CSq
Srsman
4. Compensating state:
CSstate =Cand | |J Os|>0and| |J Oy >0
5,€CSq s;€CSg,
Spartial
5. Finished compensated state:
CSstate = FC and U Os|>0and U Os| >0
5:€CSq s,€CSY,
Stinal

6. Stand-by state:

CSstate = SB and ((U O, NO0g # (D) or (U Os NOstg = OstQ>>

SiECSQ s;,€CSq

Sstandby

56 Chapitre 4. Reliability in Service Composition Execution

Definition 4.4.7. For a query @Q = (Ig,Oq, f) or Q = (Ig,0¢g = Ostg U Oopg), its corresponding C'Sg
can be in one of the following execution states from the point of view of the user:

1. userCSgtqte=1: initial, when the C'Sg is submitted for execution.

2. userCSsiate=E: executing, when user might have partial responses. Let Op be the set of these
partial responses obtained by the user:

s;€CSq

a) if CSgiqre=FE, then Op = (U Osn OQ> and |O,| > 0;

b) if CSstate=C, then Op = U 0,,n0g|U U Oy | with U Os| > 0and
5,€CSq s; €CSg ‘ 5;€CSq
U Os(20
s, €C8y,

3. userCSsiate=F" finished, when user has final response. Let O be the set of responses obtained by
the user after the completed execution of C'Sq:

a) if C'Sstate=SF, O = Og; the user has 100% of his desired outputs;
b) if CSstate=FC, Op # Og; the user has x% of his desired outputs (0 < z < 100);

¢) if CSstate=5SB, Op C Og or O = Ostg; the user has y% of his desired outputs or at least its
mandatory outputs (0 < y < 100), and a Global Snapshot exits that can be resubmitted later.

From the point of view of users, fuzzy atomicity is important in terms of the number of its desired
outputs. Following definition formally describes the degree of outputs, related with O, generated by the
execution of a composite service.

Definition 4.4.8. Given CSg that satisfies a query @ = (Ig,Oq, f) or @ = (Ig,0qg = Ostg U Oopq)
and the set of outputs generated by the execution of C'Sg that are in O¢, denoted as Or (Or C Ogq), the
Degree of Outputs Dependency generated by a CS (DegreeOutputGcs) is the percentage of O generated
by the execution of C'Sg, expressed as DegreeOutputGes, = |Or|/|Oq]|.

This degree is equal 1 (representing 100% of O), if the internal execution state of C'Sg is successfully
finished (i.e., C'Sstate=SF), in which case Or = O¢. This degree represents a value less than 1, if the
internal execution state of C'Sg, is finished compensated (i.e., C'Ssiqre=F'C'), or executing (i.e., CSstate=F),
or stand-by (i.e., C'Sstate=SB), in which cases O = () or O C Og or Op = Ostg.

Recovery strategy algorithm. Our approach enables fault-tolerant execution by selecting recovery strate-
gies based on fuzzy atomicity. A dedicated algorithm, in cooperation with the execution engine (see Fig-
ure 4.12), monitors service and system states, applies recovery when needed, and calculates fuzzy atom-
icity. The algorithm monitors the composite service state (C'Ssiqtc), updates the system state, decides
recovery strategies upon failures, and calculates both system and user fuzzy atomicity System tatomicity
and User¢qtomicity. 1t takes as input the query @, the composite service graph C'Sg, and the retry limit
Niries. During normal execution, it tracks progress and computes atomicity metrics. When all services
succeed, the user receives 100% of Og.

If a service fails, function Get_Possible_Final_Outputs() estimates the attainable outputs O} from
unaffected services. The ratio DegreeOutputGes, = OF/Oq is compared to the user’s fuzzy threshold to
guide recovery. If the acceptable fuzzy measure is not met, then either the failed service is retriable then
it is retried until success, or the failed service is not retriable then backward recovery via compensation is

4.5 A Glimpse on Further Contributions 57

Fault Tolerant Fuzzy Atomicity
Algorithm
T

Execution Engine

T

In charge of: In charge of :

1. Monitoring the state of CS 1. Controlling CS, execution
d variable C: .
(rea v.arla e Cs.e) 2. Updating the state of CS
2. Updating system state (set varibale CS, .)

(set variables System,,,., userCS,,,.) . sate
3. Deciding recovery technique 5 fails
4. Calculating fuzzy atomicity

(set varuable User,

System,

fatomici ty?

) .

Execute_Retry
. . >
Recovery Decision | Execute_Backward_Recovery
T /\ Execute_Retry
>

‘ Execute_Substitution_Recovery

— Execute_Checkpointing
_< > >

Figure 4.12: Execution engine and fuzzy atomicitybased recovery strategy cooperation protocol

applied. All executed services are rolled back, resulting in a state where “(almost)nothing” is preserved.
If the acceptable fuzzy measure is met, then if the failed service is retriable then it is retried up to N¢yjes,
otherwise, if a substitute exists, it is invoked. In case of unsuccess (i.e., when failed service has not been
successfully executed after Ny,;.s times or when its substitute has not been successfully executed or when it
not has a substitute), the algorithm executes checkpointing. Execution continues with unaffected services,
and the user may still receive some desired outputs.

The algorithm also supports relaxing the strict retriable condition. In real-world systems, failures may
not be fixed immediately. Therefore, after a limited number of retries, checkpointing allows deferred
execution. The user can resume from the checkpoint to eventually obtain all desired outputs. At the end
of CS execution, successful or not, the algorithm returns the final System tatomicity, USer tatomicity, and
the checkpointed C'Sq, if applicable.

4.5 A Glimpse on Further Contributions

Concurrency Control of Composite Service Execution in Peer-to-Peer Networks

The content of this section is about El Haddad et al. [81] work carried out in collaboration with colleagues from
Université Paris Dauphine-PSL

In this work, we addressed concurrency management during the execution of component services in
peer-to-peer networks to enhance reliability. In such networks, services running on independent peers
are orchestrated according to predefined transactional requirements. We introduced a transactional ex-
ecution model that builds on the transactional properties of these services. It is a hierarchical model
based on open nested transactions, where a root transaction can initiate multiple sub-transactions. Leaf
sub-transactions are treated as standard flat transactions and correspond to service invocations, while
non-leaf sub-transactions manage control flow and determine the execution of their children. To manage
concurrency, we used an optimistic control strategy through a decentralized serialization graph. A leaf
transaction constructs its graph from log files sent by the peers whose services were invoked. A non-leaf
transaction derives its graph from those of its children. In both cases, the graph is updated by merging

58 Chapitre 4. Reliability in Service Composition Execution

received data and replacing transaction identifiers with those of sibling transactions within the same hi-
erarchical level. Serialization graphs are propagated bottom-up—from peers to leaves, and then through
intermediate transactions up to the root. If a cycle is detected in the graph, two scenarios may arise: (i) if
the transaction logic is a conjunction, the failure of any child leads to the failure of the transaction; (ii) if
the logic is a disjunction, a victim child is selected to abort in order to break the cycle, following an Error!
message from the parent. This decentralized mechanism ensures globally correct execution of composite
web services through coordination among dependent sub-transactions and their associated peers.

4.6 Summary

In this chapter, we addressed composite services execution consistency and reliability in the presence
of failures. After reviewing related work, we proposed a coloured Petri net based execution framework
that supports both forward and backward recovery. Forward recovery through retry or substitution of
failed services, and backward recovery via compensation when forward strategies are not applicable. To
enable more flexible and user-centric recovery strategies, we introduced the notion of fuzzy atomicity,
which relaxes the classical “all-or-nothing” model of service execution. Then, we proposed a recovery
approach combining semantic compensation and checkpointing to allow partial results to be accepted
by users when full recovery is infeasible. We concluded this chapter with a brief overview of work on
concurrency control during service composition execution.

CHAPTER

TRUSTWORTHINESS IN SERVICE SELECTION AND COMPOSITION

In this chapter, we tackle the challenge of trustworthiness in service compositions. We provided approaches to trust-
based service management in distributed, social service environments. First, we defined a trust model as a compo-
sitional concept that includes social, expert, recommender and cooperation-based component. Then, we proposed a
distributed trust computation mechanism for service discovery and selection, and an adaptive coalition formation ap-
proach for service composition. This chapter highlights contributions carried out during the doctoral thesis of Amine
Louati, that I have co-supervised with a colleague from Université Paris Dauphine-PSL, and presented in Louati et
al. [152, 153, 155, 154, 156] and Louati et al. [157].

5.1 Motivations

In Chapters 3 and 4, we explored approaches that ensure both efficiency and reliability in service compo-
sitions through objective quality attributes. Quantitative QoS metrics were used to optimize performance,
while qualitative transactional properties aimed to guarantee consistency and reliability. However, these
objective attributes overlook an important dimension of service evaluation: subjective user perceptions.
In practice, users rely heavily on reviews, ratings, and personal experiences when selecting services. Sub-
jective attributes reflect individual satisfaction and trust factors that have become increasingly relevant in
the Web 2.0 era. A service might perform well technically but still receive poor ratings due to weak cus-
tomer support, for instance. Such discrepancies underscore the importance of integrating user-centric,
subjective attributes into service selection and composition.

Furthermore, the approaches in the earlier chapters (Chapter 3 and Chapter 4) assess services in isola-
tion, ignoring the characteristics of the service providers themselves. In real-world scenarios where com-
positions often involve third-party or unverified providers, it is difficult to determine a priori whether a
service, and its provider, can be trusted to carry out the required functionality.

Finally, the rise of social networks and peer-to-peer platforms has introduced a social dimension to ser-
vice provisioning. Users now act as both consumers and providers in decentralized, socially embedded
ecosystems (Dustdar et al. [75]). Service selection increasingly depends on social indicators such as peer
recommendations, community ratings, and previous experiences (Chard et al. [58]). In this context, in-
formation including mutual relationships, and historical behaviour, plays a central role in shaping user
preferences and decision-making.

This chapter goes beyond the previous chapters by evaluating not just services but also their providers,
and by integrating social trust factors into service discovery, selection and composition. In service-oriented
computing, trustis typically associated with a service’s non-functional description, often expressed through
QoS attributes (Lietal. [142], Vuetal. [230], Xuetal. [242]). However, numerous studies (Al-Sharawneh [6],
Bansal et al. [22], Billhardt et al. [32], da Silva and Zisman [67], Li et al. [141], Maaradji et al. [163],
Wang and Vassileva [235]) have shown that relying solely on QoS metrics is insufficient for distinguish-

60 Chapitre 5. Trustworthiness in Service Selection and Composition

Profil

N
A HotelBooking
Requirements ﬂ é Al
Functional 5
input fromCity: Paris, toCity:Turin, i O_’ <-l>—>o

FlightBooking
(T2) I
TrainBooking
"<8>

CarSharing
(T4)

checkin:26/06/2026, checkOut:01/07/2026,
guestNumber:1, customerName:myname,
email : me@univ.fr,

cardNumber:Visal23, expiryDate:03/27
output Hotel Voucher, Flight e-ticket

Travel Arr

Non-functional
U={U(R1)=1, U(R2)=1/2,U(R3)=1/4}
alpha = 0.7, beta = 0.6, mu=0.65

HotelBooking services @ TrainBooking services s —— Professional(R1)
)) o --=-- Colleague(R2)
FlightBooking services ‘?v CarSharing services i ... Partner(R3)

Figure 5.1: Multi-relational social network and TravelArrangement booking motivating example

Table 5.1: Available candidate component services for TravelArrangement

Task Service Response Time Execution Cost Transactional Property = Provider
HotelBooking S11 15mn 1€ - HB1
(T1) S12 10mn 3€ compensatable HB2
FlightBooking 521 20mn 1€ - FB1
(T2) S22 10mn 10€ compensatable FB2
823 8mn 5€ retriable FB3
TrainBooking 831 20mn 5€ - TB1
(T3) S32 18mn 8€ - TB2
CarSharing 841 5mn 2€ compensatable CS1
(T4) S42 12mn 15€ - CS2

ing between trustworthy and untrustworthy service providers or for assessing the reliability of services.
A robust computational model of trust must instead mirror how trust is built in human societies. For ex-
ample, a service provider with whom a requester shares a history of successful interactions, mutual social
connections, or strong recommendations is more likely to be trusted, even in the absence of optimal QoS
guarantees, as the following example illustrates.

5.2 State-of-the-art and Contributions 61

Motivating example. After securing accommodation and purchasing a flight ticket to Turin, the re-
searcher submits her travel request for department approval. Suppose the department director rejects
the request, citing a policy to reduce CO; emissions and recommending train or car travel instead. Sup-
pose the researcher prefers to travel by car and considers using a CarSharing service. As illustrated in
Figure 5.1 and Table 5.1, she have to choose between two services: s4; provided by C'S1 and s45 provided
by C'S2.

X If the researcher relies solely on QoS and transactional attributes, she would select service s4; pro-
vided by CS1, as it is faster, cheaper, and compensatable.

v However, if she takes into account her past experience with both providers CS1 and CS2, and if she
prefers a well-known provider by consulting her social network illustrated in Figure 5.1, and if she values
the recommendation of an Italian colleague with prior experience as a passenger (a3 with s4; compared
to ag or ag with s42), she could opt for s45 offered by C'S2.

Multiple studies (Li et al. [141], Liu and Wang [148], Maaradji et al. [163], Wang and Vassileva [235])
have shown that trustworthiness is a key factor in effective service selection, ensuring alignment with re-
quester expectations. Liu and Wang [148] define trust as “the belief of one participant in another, based
on their interactions, in the extent to which the future action to be performed by the latter will lead to
an expected outcome”. Several authors have proposed incorporating a societal perspective into tradi-
tional service discovery (Al-Sharawneh [6], Billhardt et al. [32], Li et al. [141], Liu and Wang [148]). This
perspective draws on trust information from the trustor’s social network and prior interactions. Sabater-
Mir and Vercouter [199] identified three key sources of trust: (i) direct experience from past interac-
tions between the trustor and trustee, (ii) communicated experience from third parties, and (iii) social
information, which includes semantic or structural knowledge useful for evaluating trust. Beyond com-
puter science, trust has been studied in philosophy (Perlman and Fehr[191]), socio-psychology (Berscheid
and Ries [26], Luhmann [158]), and economics (Adler [4]). These fields showed that trust is multi-
faceted (Abdul-Rahman and Hailes [2], Li and Wang [140]), and each component contributes uniquely
to assessing a service’s trustworthiness.

This chapter introduces trust-based multi-agent approaches that leverage social network structures
and user interactions for service discovery, selection, and composition. Trust is modeled using three com-
ponents: social credibility, expertise, and recommendation, derived from social network analysis and
service quality metrics. High social credibility implies strong awareness of reliable providers and recom-
menders; expertise reflects high service performance; and recommendation indicates the trustworthiness
of third-party endorsements. We also propose a decentralized request propagation mechanism and a dy-
namic coalition formation process for service composition, introducing a new trust dimension: trust in
cooperation.

The rest of the chapter is organized as follows. In Section 5.2, we outline state-of-the-art research work
for trustworthy service discovery, selection and composition, and summarizes our contributions in this
research line. In Section 5.3, we present our trust model and our trustworthy-based multi-agent approach
for service discovery and selection. In Section 5.4, we present our approach for service composition based
on trust and coalition formation. In the last section, we conclude the chapter by summarizing our findings.

5.2 State-of-the-art and Contributions

In this section, we review trust-based approaches for service discovery, selection, and composition.

Trust-driven Service Discovery and Selection. To identify trustworthy service providers, numerous
approaches have explored trust in expertise through reputation, typically by analyzing past user-service
interactions (Billhardt et al. [32], Lalanne et al. [134], Li et al. [142], Vu et al. [230], Xu et al. [242]). Vu
et al. [230] and Xu et al. [242] proposed QoS-aware frameworks that incorporate user feedback and rep-
utation management into distributed service discovery. Billhardt et al. [32] introduced experience-based
selection, estimating trust from similar services in the absence of direct history, while Lalanne et al. [134]

62 Chapitre 5. Trustworthiness in Service Selection and Composition

emphasized perceived quality and end-user satisfaction. Li et al. [142] relied on user feedback (e.g., rat-
ings and comments) to compute service reputation. Decentralized reputation models such as Fire (Huynh
et al. [117]) and Regret (Sabater and Sierra [198]) allow agents to assess reputation autonomously. Re-
gret uses three trust dimensions: individual (direct experience), social (group opinion), and ontological
(semantic context), while Fire considers direct trust, role-based trust, witness reports, and certified repu-
tation. Yu and Singh [248] formalized trust propagation to prevent interactions with unreliable services.
Other works (Day and Deters [68], Kalepu et al. [127], Yu and Lin [252]) used third-party monitoring
of QoS metrics (availability, accuracy, execution time, cost, and bandwidth) to assess service behavior.
Billionniere et al. [33] expanded this with context-specific attributes.

As noted in Huynh et al. [117]) and Sabater and Sierra [198], trust evaluation should also incorpo-
rate social relationships and agent roles. This includes metrics like degree centrality (Bansal et al. [22]),
social proximity (Maaradji et al. [163]), combined prestige-centrality (Sierra and Debenham [206], and
multi-constraint social models (Liu and Wang [148]). However, many of these approaches often ignored
semantic information and typically consider social networks with only a single relationship type.

When direct interactions are lacking, referral systems enable agents to cooperate by giving, pursuing,
and evaluating recommendations (Yu and Singh [249]). Trust inference methods in social networks (Gol-
beck [101], Hang et al. [113], Liu et al [149], Wang et al. [233], Wang and Singh [234]) aim to generate
personalized recommendations by aggregating opinions from the trust network. Golbeck [101] showed
that trust-aware recommendation techniques, such as the FilmTrust system, yield more accurate and per-
sonalized results than classical collaborative filtering. Other techniques include leader-follower strategies
(Al-Sharawneh and Williams [7]), and trust propagation (Massa and Avesani [167], Neville et al. [180]).
While effective, these methods rely primarily on subjective user input, potentially limiting reliability.

Trust-driven Service Composition. Early work framed service composition as a planning problem, re-
lying on centralized orchestration engines to match user needs with service capabilities (Paik et al. [188],
Ponnekantietal. [193], Sirinetal. [209], Tong etal. [220], Xu etal. [240]). These approaches modeled com-
position as a graph search task, where inputs and outputs define initial and goal states, and services act
as operators enabling state transitions. While structured, these methods depend on centralized registries
and semantic matching, limiting scalability and expressiveness regarding user preferences. Subsequent
approaches shifted toward agent-based coordination for dynamic and distributed composition. Chore-
ography models enabled agents to reason about capabilities and coordinate tasks (Charif et al. [59]),
though they prioritized user constraints over agent autonomy. Case-based reasoning (Siala et al. [205])
and context-aware agents (Maamar et al. [160]) introduced more flexibility, but often overlooked social
factors like trust, cooperation, and compatibility. In most of these models, agents acted more as coordi-
nators than as collaborative participants in an organizational structure. Parallel research explored coali-
tion formation to support cooperation among self-interested agents in distributed environments (Asl et
al. [18], Ermolayev et al. [85], Muller et al. [179], Tong et al. [219], Bourdon et al. [38], Griffiths and
Luck [104]). Asl et al. [18] demonstrated that coalitions can yield stable communities optimizing both
individual and collective utility. However, many approaches like Ermolayev et al. [85], Muller et al. [179],
and Tong et al. [219], neglected trust in partner evaluation. Griffiths and Luck [104] incorporated trust in
admission decisions but lacked mechanisms for members to accept or reject newcomers. While Bourdon
et al. [38] proposed a trust-based, provider-centric coalition formation but lack mechanisms for agents to
leave or switch when dissatisfied.

Positioning of contributions.

Our primary objective in this line of research was to develop comprehensive trust-based mechanisms
for service discovery, selection, and composition in service-oriented environments. While many existing
approaches focus narrowly on reputation-based trust derived from past interactions (e.g., Billhardt et
al. [32], Lalanne etal. [134], Lietal. [142], Vuetal. [230], Xu et al. [242]), our work extends trust modeling
to a multi-dimensional perspective that incorporates social relationships and recommendation credibility.

Initially, in a line of work Louati et al. [152, 153, 155, 154, 156] (Section 5.3), we introduced a trust
model encompassing three dimensions: societal, expertise, and recommendation. This multi-dimensional
approach addresses the limitation noted by Huynh et al. [117] and Sabater and Sierra [198] that trust eval-

5.2 State-of-the-art and Contributions 63

Steps

Recovery

Composition

[157]

[152, 153,
154, 155, 156]
NFP

Selection / Heuristic ||

QoS Qos N
or and
TP TP

Exact

Optimization

Figure 5.2: Contributions to Trustworthiness in Service Selection and Composition

uation should incorporate social relationships and agent roles beyond mere service reputation. Societal
dimension assesses whether a service provider merits engagement prior to service utilization, extending
beyond the fixed QoS attributes commonly used in approaches like Day and Deters [68], and Kalepu et
al. [127]. Expertise dimension evaluates the reliability and expected performance of the service itself,
while recommendation dimension determines the trustworthiness of agents providing recommendations
and the credibility of those recommendations. In our earlier work Louati et al. [152], we concentrated
on discovering trustworthy service providers within a Multi-Relation Social Network (MRSN) centered
on a service requester. Unlike existing social trust approaches that rely on single relationship types or
limited social metrics (e.g., Bansal et al. [22], Maaradji et al. [163]), we computed social trust by aggre-
gating social position, social proximity, and social similarity measures that incorporate both semantic and
structural information extracted from the requester’'s MRSN. Semantic information encompasses service
requester and provider profiles along with their interactions, while structural information includes the
positioning of service providers within the MRSN graph. The centrality measure, fundamental in so-
cial network analysis, contributes significantly to social trust computation, as demonstrated by Bansal et
al. [22]. Our approach generates a Trust-Relation Social Network (TRSN) that is requester-centered and
based on a single relation, the social trust relation, which effectively filters and ranks service providers.
We later proposed, in Louati et al. [153], a distributed approach for trust-based service discovery in social
networks enabling agents to propagate service queries and evaluate providers based on sociability and
expertise. Drawing from referral systems (Golbeck [101], and Hang et al. [113]), our model identifies
not only trustworthy providers but also effective recommenders—agents who, while not offering services
themselves, contribute valuable referrals. After, in Louati et al. [155], we distributed the search process by
designing a decentralized query propagation mechanism aligned with the social network topology, elimi-
nating the need for central coordinators as in Yu and Singh [249]. Agents collaborate to locate trustworthy
recommenders and providers offering quality services based on distributed knowledge of their network
acquaintances’ expertise. Later, in Louati et al. [154], we proposed a multilevel agent-based framework
that integrates the three trust dimensions (sociability, expertise, and recommendation) into the selection
process. Unlike prior ranking or trust propagation methods (e.g., Massa and Avesani [167], Hang and
Singh [112]), our model supports multiple trust dimensions simultaneously. Lastly, in Louati et al. [156],
we developed a distributed algorithm for service discovery and selection using a probabilistic trust propa-
gation model via referral systems. Unlike prior trust inference methods that focused mainly on aggregated
opinions for personalized recommendations (e.g., Golbeck [101], Liu et al. [149], Wang et al. [233]), our
approach distinguishes between the roles of intermediate agents (recommenders and providers) along
referral chains, enabling more nuanced trust evaluation than traditional collaborative filtering.

64 Chapitre 5. Trustworthiness in Service Selection and Composition

Building upon these foundations, in Louati et al.[157] (Section 5.4), we proposed a broker-based multi-
agent framework for dynamic, trust-aware service composition through coalition formation. While pre-
vious coalition-based models explored cooperative behavior among agents (Asl et al. [18], Ermolayev et
al. [85], Muller et al. [179]), they often lacked robust partner evaluation or mechanisms for adaptation.
Our model integrates trust assessment (trust in cooperation) prior to collaboration and preserves agent
autonomy in partner selection, addressing gaps in works like Griffiths and Luck [104]. Furthermore, un-
like static coalition models, our framework allows dissatisfied members to leave and supports dynamic
restructuring, overcoming the rigidity identified in Bourdon et al. [38].

5.3 Trust-driven Service Discovery and Selection

The content of this section is adapted from Louati et al. [152, 153, 155, 154, 156 | work carried out during the Ph.D.
thesis of Amine Louati that I have co-supervised with a collegue from Université Paris Dauphine-PSL

Overview

In this work, we modeled service discovery and selection using a multi-agent system, where agents rep-
resent requesters, providers, and intermediaries within a requester’s social network. Agent interactions
occur through message exchanges.

We designed a trust model to (1) help agents identify trustworthy providers, and (2) support dis-
tributed decision-making. The model consists of three components: trust in sociability (relevance of providers
and recommenders), trust in expertise (service quality), and trust in recommendation (reliability of opin-
ions). Agents use these trust metrics during service discovery to guide interactions. In cases without
prior interactions, a decentralized referral system where agents cooperate by sharing and evaluating re-
ferrals is used. Trust between non-adjacent agents is inferred using a probabilistic model, adapted from
Wang et al. [233], which considers the roles (recommender or provider) of intermediaries in the trust
path. Semantic information is integrated by incorporating agent profiles and relationship types into the
trust model, improving its expressiveness. We also proposed a distributed algorithm for service discovery
and trust propagation through referrals.

Our assumptions include: (i) agents are cooperative and share experiences, (ii) each agent only knows
its direct acquaintances, and (iii) decisions are decentralized. Agents have a finite set of services and act
on behalf of their users. During discovery, agents can assume four roles: Requester that initiates discovery
and forwards queries to trusted contacts; Provider that offers required services and may propagate queries;
Recommender that identifies and forwards queries without offering required services; Stopper that halts
propagation when no relevant knowledge is available, reducing overhead.

Model

We considered a multi-relation social network (MRSN) (Szell et al. [216]) modeled by a graph where
nodes represent agents and, an edge between two agents indicates a symmetric social relationship between
them (see Chapter 3, Definition 2.1.3). The neighborhood of an agent is defined as follows:

Definition 5.3.1. Givena M RSN graph G = (V, E), the neighborhood of an agent a;, € V w.r.t. a type of
relationship R; € {R1, Ra, ..., R, }, denoted Ng, (ax), is defined as Ng, (ax) = {a; € V| (ar,q;) € E;}.

In the MRSN, each agent ay, interacts with a subset of agents, called the social acquaintances S Ay. This
set represents ay’s local view in the MRSN such as SA;, = RLéRN R, (ar).

A service is described in terms of functionality, inputs, outputs, and non-functional attribute values
as in Chapter 3, Definition 2.2.1. A user communicates his needs by expressing a set of required services
and his preferences over relationship types and trust threshold values as in Chapter 3, Definition 2.1.2.
We used a deliberative architecture (Bryson et al. [41], Georgeff and Lansky [96]) that enables agents to
evaluate trust before engaging in interactions. As defined below, the architecture comprises four modules

5.3 Trust-driven Service Discovery and Selection 65

(Reasoning RM, Trust 7 M, Control CM, and Interaction ZM) along with two repositories (Beliefs BR
and Goals GR).

Definition 5.3.2. An agent a;, is defined as a 6-components structure < BR, GR, RM, TM,CM,ITM >
with:

® BR =< Pry, Sk, PIT}, >, the belief repository with Pr;, a profile consisting of a set of items struc-
tured into a set of fields each containing one or several values, S, = {sk1, ..., Skm, | @ set of offered
services and PIT}, a Personal Interaction Table. Each record in PIT}, contains the following ele-
ments: an acquaintance agent a; € SAy, the profile Pr; of a;, the social acquaintances set SA; of a;
and the set of services S; provided by a;. This information is acquired through interactions among
agents.

e GR, the goal repository which encompasses the required services needed to solve uset’s query.

e RM, the reasoning module representing the matching function. A matching function between a
service s;; € Si and a service s € I is defined as follows:
matching(s, sg1) = True < (sgi.in C s.in) A (s.out C sgj.out) A (sgi.f = s.f).

o T M, the trust module which computes all trust measures that an agent a;, has with its social ac-
quaintances before interacting with them.

e CM, the control module which manages agent’s behavior and guides its decision-making in the
discovery and selection process.

e 7M, the interaction module which structures the messages built by the agent a;, and handles the
received ones.

Trust Model

Trustworthiness in providers and their offered services is built upon three measures: trust in sociability
(ST), trust in expertise (ET), and trust in recommendation (RT).

Trust in Sociability (ST). It measures the social trust that agent a; places in agent a;, based on in-
formation from the MRSN including the graph structure, agent profiles (e.g., personal information and
interests), and relationship types. From this data, three metrics are derived: social position (SPo), social
proximity (SPr), and social similarity (SSi). We first describe these metrics and then explain how they are
combined to compute trust in sociability.

1. Social Position Measure (SPo). It is computed using the centrality degree of agent a;, reflecting its so-
cial power within the network (Bansal et al. [22]). It considers not only the number of relationships
but also their types R;, 1 < i < n, as defined below:

SPo(a;) = Y Ulp((az,a))) x b'(aj, ar) (5.1)

i=1 aj ESAJ'
where bi(a jsar) = 1iff a; and q; are directly connected with an edge of relationship R;, 0 otherwise.

2. Social Proximity Measure (SPr). It is defined as the average cost of a path between two agents in
the graph. Let path = (ax,...,a;) be a path of length d between an agent a;, and an agent a;, and
U(p((ai—1, ar))) be the cost of the edge (a;—1,a;) € path, we defined SPr as follows:

d
SPr(ag,ay) = 2=1=1 U(pgal‘l"”))) (5.2)

66 Chapitre 5. Trustworthiness in Service Selection and Composition

3. Social Similarity Measure (SSi). It is computed based on the comparison between two agents of their
profiles and their social acquaintance sets. SSi(ax,a;) is an aggregation of two measures, namely,
Neighborhood Similarity (NS) and Profile Similarity (PS).

o Neighborhood Similarity Measure (NS). We defined neighborhood similarity to find links between
agents based on their social acquaintances as follows:

|R|
NS(ak,a;) = > Ulp((ar-1,@))) x 6 (ax, a;) (5.3)
=1
with 6 (ax,a;) = iz where jac’ = 422 is the Jaccard distance between aj, and a; ac-

cording to the relationship R; such as z; = |Ng,(ax) N Ng,(a;)|, yi = |Ng,(ar)| — i, zi =
[N, (aj)] — @i

o Profile Similarity (PS). An agent’s profile' is not only characterized by its acquaintances, but
also by a set of personal information and interests. We defined profile similarity as follows:

PS(ay,a;j) = R > Bi x Silay, aj) (5.4)

i

where S (ax, a;) is the similarity between the ith items of aj and a; using Burnaby measure [42],
I is the set of items in profiles and f3; is the weight attributed to the item i with), _; 3; = 1.

The overall measure of social similarity, SSi(ax, a;), between a requester agent aj, and an agent a;
is computed as the product of the two above measures:

SSi(ak,a;) = NS(ag,a;) x PS(ax,a;) (5.5)

The overall trust in sociability, ST (ax, a;), that an agent a;, has in agent a; is then computed using a
Simple Additive Weighting technique as follows:

ST (ak,aj) = A1 x SPo'(a;) + Ao x SPr'(ay,a;) + A3 x SSi'(ak, a;) (5.6)

where \; € [0, 1] is the weight of the ¢-th social measure with Zle A = 1. and SPo'(a;), SPr'(ak, a;), and
SSi'(ak,a;)) are the normalized values of SPo'(a;), SPr'(ak,a;), and SSi'(ax, a;)) so they lies between
0and 1.

Trust in Expertise (ET). It evaluates the QoS of a service. A reliable agent should be both socially
trustworthy and sufficiently expert. Following Lalanne et al. [134], we have defined ET(ax,a;, s;i), the
trust agent ay, has in service s provided by agent a;, as the aggregation of three following metrics:

1. Specialization (Sp(s;;)): the percentage of successful uses of service s;; compared to all services it
offers. It is computed as presented in Chapter 2, Equation 2.1.

2. Reliability (Re(s;;)): the probability that a service sj; is operational at the time of invocation. It is
computed as presented in Chapter 2, Equation 2.2.

3. Experience rating (Eval(ak, s;1)): the rating of the quality of service execution. After using s;;, agent
ay, gives an evaluation v € [0, 1] reflecting its experience. Eval(ax, sj;) is the average of the experi-
ence ratings of s;; for n uses by a; computed as presented in Chapter 2, Equation 2.3.

The overall trust in expertise, ET (ay, a;, s;1), that an agent a; have in a service s;; offered by an agent
a; is computed as follows in Chapter 2, Equation 2.4.

1A profile consists of a set of items structured into a set of fields, each field containing one or several values (e.g., gen-
der=[female], music-likes=[folk, jazz, pop])

5.3 Trust-driven Service Discovery and Selection 67

Trust in Recommendation (RT). According to Golbeck [101] and Berscheid and Reis [26].

we defined trust in recommendation (RT) as the trust value aj assigns to a recommendation from
a; for service s,; offered by provider a,. It is estimated from past experiences with a; during previous
compositions and has two parts: objective part [ry;|s,] € [0,1] which is the proportion of good recom-
mendations made by a; for s,;), subjective part [gx;|sp] € [0, 1] which reflect a)’s satisfaction with a;’s
recommendations for s,;. Following Chen and Singh [61], we computed RT as:

1 if [rijlspr] = 007 [qrjlsp] =0

5.7
([rrjlspr] + 1)lawslsnl — 1 otherwise 57)

RT (ak,aj, spi) = {
As noted above, [ry;|sp] is the ratio of services s, recommended by a; and actually selected by ay,

among all a;’s recommendations for s,,; offered by provider a,,. Following Maamar et al. [162], it is defined
as:

1 if Nbrecjys,, =0
[Tkj|8pl] = NbSElkj\spl
Nbrecjmspl

(5.8)

otherwise

where Nbrec; k|, 1S the number of times a; recommended service s,; (offered by a,,) to ai, and Nbsel), nm
is the number of times a;, selected s,,; in the composition.

However, [g;;|spi| measures ay’s satisfaction with a;’s recommendations for service s,; offered by a,,.
Given Eval(a, sp;) (Chapter 2, Equation 2.3), the rating a, assigns after executing s,—I[qgx;|spi] is the
average of all ratings ay, has given to s,; after successful executions:

1 if Nbselkj‘spl =0
| g — Nbsely o
[qkj| Pl] >, kilspl Eval(a,sp1)
Nbsely;|sp

(5.9)

otherwise

Our approach

Our trust-based service discovery and selection approach, illustrated in Figure 5.3, involves three steps:
service discovery, trust inference, and service selection. In the first step, our algorithm computes trust in
sociability and recommendation, matches service functionality, and builds Trust-Relation Social Network
(TRSN) a tree linking providers and recommenders, weighted by trust values. In the second step, trust
values are propagated through the TRSN to build a Requester-Centered Social Network (RCSN), where
each provider is evaluated based on inferred trust. In the third step, services are ranked by expertise trust,
and only those exceeding a defined threshold are selected.

In our approach, sociability and recommendation trust guide discovery, while expertise trust ensures
high-quality selection without excluding useful recommendations.

Step 1: Service Discovery. This step identifies trustworthy providers using a distributed trust-based
breadth-first search over the MRSN graph, given a query Q = (F,U,«, 3,). The requester agent a,
initiates the process by setting its role, its distance (= 0), and preparing an empty provider set PSet, to
store discovered providers, services, and associated trust values. To begin, a, collects updated information
from its social acquaintances SA, (i.e., services, acquaintances, and profiles) through Request/INFORM
messages. It then computes trust in sociability and retains only those acquaintances exceeding threshold o
in LT A,.. Trust thresholds o and /3 are dynamically scaled with the chain length to prioritize highly trusted
distant agents. Queries are propagated only to trusted acquaintances who are either potential providers
or reliable recommenders. Recommendation trust fg(dist)) further reduces propagation to high-quality
recommenders. To avoid cycles, agents update their distance only if the new value is shorter, set their
parent, and records their children in the tree. This step then proceeds by checking for service matches.
If the agent offers a required service (i.e., a provider), it records it and propagates the query to trusted
neighbors. If not, but it can recommend trusted providers (i.e., a recommender), then it forwards the
query; otherwise, propagation stops.

The result of this step is a Trust-Relation Social Network (TRSN) tree rooted at a,, linking providers
and recommenders based on service functionality and sociability.

68 Chapitre 5. Trustworthiness in Service Selection and Composition

Multi-Relation Social Network (MRSN)

—— R1(family)
= == R2(friend)

Step 1: Service Discovery

Trust-Relation Social Network (TRSN)

Sociability (ST) \
on
Functional Matching
op
Recommendation (RT)

Query= (F, U,a,B,1)

={s1,s,, 53}
@ Ig @ (U(Rl) 1, UR,)=1/2, U(R;)=1/4
(0]

- a=0.7
Requester profile and each LE 0.6
of its social acquaintances =065

@ rrovider

Q© Recommender

0.8,0. (08

Ve ~
Trust Values Propagation
Lt

RCSN construction

Step2:
Trustinference

Requester-Centered Social Network (RCSN)

Step 3: Service Selection

Tl6]= (ts[9] +(Req,0.7,1))

21={n12] +(Req,0.9,1))

Offered services Agent ET Trust 1[0]= (4[0] +(Req,0.7,1)) Tol2]=(t[2] +(Req,0.9,1))
< & Tl9)= (t6[9] +(Req,0.7,1)) Tol1]= (w:[9] +(Req,0.7,0,9))
g£ Su1 & o] | %% | f | 61 (5,61 +{Req,0.7,1))
E= Sy a, 0,57 Gl2)=(ay, $2)

0,535 Expertise (ET)

Tl6]1=(as, ses)

P S, ag 0,85 0,7 w21y, su) T6[6]=(25, S50

£ !

T e -

g 6[9]= (t5[9] +(Pro,0.8,0,

o - 058 | 031 0535 w1k (uitl +(Rec0.73,075) 27

£ or &

g Se1 3 073 | 07 | Nul0)- (1519 +(Rec,0.8,1))

£% S, a 071| | 031 H §1:09)= (19]+(Rec,0.8,1))

Gty s 7 %

. A Tl91(as, ss2)
e ;“9[9]:(39v S31)

Figure 5.3: Trust-Based Service Discovery and Selection Approach

Step 2: Trust Inference. In social networks, an agent evaluates another’s trustworthiness either through
direct interactions or, in their absence, through a trust inference mechanism that aggregates trust values
along paths between agents to produce a single evaluation.

Trust Values Propagation. The previous step produces a TRSN tree linking providers and recommenders,
with edges weighted by trust in sociability and trust in recommendation. The requester a, initiates the trust
inference algorithm by sending iNForRM messages (tagged with infer) to its children. Each agent forwards
the message to its own children and, if it is a provider, returns a stack containing its identifier and matching
service. When a parent receives a stack, it appends its role and trust values: {roley, ST (ax,a;), RT (ak,a;)},
where RT = 1 if the child is a provider. The stack is then passed upward until it reaches a,, which stores
itin PSet,. Figure 5.4 illustrates trust propagation from provider ag to requester ay within the TRSN in
Figure 5.3.

T0 [9] =

@ 79[9] = (ao, Sg[l e 78]9] = (79[9] + (Rec, ST (as, aq), 1)2 en;[()} = (13[9] + (Pro, ST (as, as), RT (as, as, sg;)l) o

Figure 5.4: A provider-recommender chain

T(,[g] + (Req, ST (ap, ag), 1))

After propagation, PSet, contains, for each provider, the trust values (i.e., sociability and recommen-
dation) along its provider-recommender chain chain = (a,, ag, ag+1, - - - , ap). Trust between non-adjacent
agents is inferred using the probabilistic model of Wang et al. [233], extended to include recommendation
trust. Based on PSet, and the law of total probability, the inferred trust of requester a, in provider a,, is
given by:

Trust(ar,ap) = P(a;) X P(aglar) x P(aky1|ar) X

. X Plaplap—1) (5.10)

where P(a,) = 1 denotes the trustworthiness of a, to itself. P(ay|a,) denotes the trustworthiness of ay
from a,’s point of view. This is an aggregation of trust in sociability and trust in recommendation such as
P(agla,) = ST(ar,ar) X RT(a,,a) where, RT (a,,a;) = 1if role, = Pro.

5.4 Trust-driven Service Composition 69

Using PSet, set and Equation 5.10, a, computes its trust in each discovered provider in TRSN, even
in the absence of direct interaction.

RCSN Construction. This phase builds a network from the requester’s perspective. Using the inferred trust
values T'rust(a,, a,) for each discovered provider a,, we construct the Requester-Centered Social Network
(RCSN), a directed, weighted tree G’ = (V’, E’) where V"’ includes the requester and all providers, and
E’ consists of trust-weighted edges from a, to each a,. The computed values are stored in the structure
PSet?, as defined below:

F1: PSet, — PSet}
Tr[p] = (7[p], Trust(ar, ap))

where F; is a function that processes each stack 7, [p] of a discovered provider a, by appending its inferred
trust value Trust(a,, ap).

Step 3: Service Selection. In the previous steps, requester a, identified a set of trustworthy providers.
This step focuses on ranking them and selecting the most suitable ones for service execution. After com-
puting trust in expertise (ET), a, generates an ordered set PSel, using the following function:

Fo: PSet; — PSel,
(1r[p], Trust(ar, ap)) = (7[p], Trust(a,, ap), ET (ar, ap, Spi))

where F, processes each record in PSet; by adding the trust in expertise that a, has in a,. At the end of
this step, for each required service, a, selects providers whose expertise trust exceeds the threshold .

5.4 Trust-driven Service Composition

The content of this section is adapted from Louati et al. [157] work carried out during the Ph.D. thesis of Amine
Louati that I have co-supervised with a collegue from Université Paris Dauphine-PSL

Overview

In this work, we proposed a broker-based multi-agent model for dynamic service composition, where
self-interested agents, each offering services with associated QoS values, cooperate through coalition for-
mation to fulfill complex user queries. To integrate the social dimension, a trust mechanism allow agents
to evaluate potential partners before cooperating. To preserve providers autonomy, agents select coali-
tion partners based on mutual trust, ensuring that only stable and agreeable collaborations are formed. If
dissatisfied, agents may leave a coalition through a defined mechanism.

Our Coalition Formation Process (CFP) builds coalitions of trustworthy agents and is characterized by
the following properties: (i) incremental, recruiting providers layer by layer from the requeste’s trusted-
relation social network; (ii) dynamic, allowing agents to autonomously join or leave coalitions based on
trust and message exchange; and (iii) overlapping, enabling agents offering multiple services to participate
in multiple coalitions.

Following Klusch and Sycara [129], our broker-based model defines three agent roles: (i) candidate
that is a potential provider likely to join a coalition; (ii) member that is a provider already assigned to
one or more coalitions; and (iii) broker that is a service requester who introduces candidates, manages
interactions, and selects the coalition with the highest expertise trust when multiple options exist.

Model

Let F be the description domain of available functionalities. A user query Q = {f1, fa,..., fn|V1 <i <
n, f; € F} is defined as a finite set of functionalities. Let A = {a1, a2, ..., as} be the set of agents, each
agent aj € A is an autonomous entity defined as follows:

70 Chapitre 5. Trustworthiness in Service Selection and Composition

Definition 5.4.1. An agent ay, =< Sk, Trust,CT, ET, AInfy,, \Sup, , By, Blist; > where:
e Sk ={s1,82,...,8m,} is the set of m;, offered services,

e Trust(ax,a;) is the trust that a; has in an agent a; in the social network which is defined as the
aggregation of trust in sociability and trust in recommendation (for details see Section 5.3),

o CT(ay,a;) is the trust in cooperation that ay, has in an agent a;,

o ET(ag,a;,s) is the trust in expertise that an agent a;, has in a service s offered by an agent a; which
is defined as the aggregation of three quality of service criteria namely: specialization, reliability
and quality rating (for details see Section 5.3);

e \nfy and ASup, € [0, 1] are respectively, the trust in cooperation lower and upper thresholds,
e () € [0,1] is the trust in coalition threshold.

e Blisty, is a blacklist containing a set of not cooperative agents that do not comply with its terms of
use.

Letus denote A, C A the set of trustworthy provider agents, A; = {ax | ar € A, and 3s € Sy suchas s.f
fi} the set of providers offering a service with the functionality f;, and Ag = |J;—_, A, is the set of providers
offering services for all required functionalities in (). As several agents could offer services for required
functionalities, coalition formation between them can address the composition problem as follows.

Definition 5.4.2. Let () be a user query. A coalition ¢ = {x1,z2,...,2, |Vi € [1,n],3k € [1, s] such as z; =
ar and aj € A;} is a set of agents that instantiate Q.

During the coalition formation process providers are organized in coalitions where each of them is
able to provide one or many required services. A coalition that does not contain a set of agents required
to instantiate all functionalities in the query is called intermediate coalition. An intermediate coalition,
denoted c;, is a partial instantiation of a query such as ¢, = {z1,x2,..., 2, |z; € {ak, f;} and ay, € A;}.
The content of an intermediate coalition evolves. The transition from one intermediate coalition c, to
another ¢, is done through proposal.

Definition 5.4.3. A proposal ¢ = {y1,%2, ..., Yn |¥i € {ar,0} and aj, € A;} represents either a member-
ship request or a membership offer. In case of a membership request, ¢ = {y1,y2,...,yn |3'y; suchas y; =
ap € A;and Vj # ¢,y; = 0}. In case of a membership offer, ¢ = {y1,y2, ..., yn |y = 2 if 2; = a,y; =
() otherwise}.

Coalition formation process

Our CFP unfolds in three sequential steps: initial coalition generation, member selection, and best coali-
tion choice. Each phase produces intermediate results that feed into the next, enabling a structured and
trust-aware approach to dynamic service composition.

Step 1: Initial Coalition Generation. The goal of this step is to generate an initial set of coalitions C
within the trust-relation social network (TRSN). Given the user query @, the provider set 4,, and the
TRSN. the requester agent a, (acting as broker) initializes C = () and identifies first-layer providers (i.e.,
those at distance 1 from a,). Each identified provider ay, is assigned to a new initial coalition c, (e.g., as
illustrated in Figure 5.5, C = {¢1 = {a2}, c2 = {a¢}}), and receives an INFOrRM message indicating its
coalition. Agents are assumed initially cooperative, but retain full autonomy to accept, leave, or reject

5.4 Trust-driven Service Composition 71

@ requester
. provider
O recommender

y

dig

0,85 7

{

/9
Y

Layer 1 Layer 2 Layer 3 Layer 4

Figure 5.5: Multilayered representation of Trust-Relation Social Network

memberships. Upon receiving an INFORM message (see Step 2 below), an agent sets its role to member.
Each newly formed coalition is then added to C. By the end of this step, the broker has constructed the
initial coalition set C, used as input for the upcoming member selection step.

Step 2: Member Selection. The goal of this step is to complete each initial coalition ¢, € C by recruiting
agents that provide services required by the user query. For clarity, we describe the process for a single
coalition c,. This member selection step is managed by the broker agent a,., who incrementally expands
c. by adding one member per iteration.

The selection strategy gives priority to providers located closer to a, in the TRSN, as they are consid-
ered more trustworthy. Given the dynamic nature of the coalition formation process, where agents may
join or leave coalitions at runtime, a timeout mechanism timer,[z] is applied to prevent infinite loops.

At each layer TRSN(!), a, identifies candidate providers candP,[z] offering the needed functionalities
func,[z]. If no suitable candidates exist, the search proceeds to layer TRSN(/ + 1). Agent a, selects the
most trustworthy candidate a; based on previously computed trust values during service discovery (see
Section 5.3), and initiates a membership negotiation protocol represents in the Figure 5.6 using Agent
Unified Modeling Language (Odell et al. [182]) formalism.

A Propost message is sent to all current members of ¢, to evaluate the candidate a;. Each member
responds based on two criteria: (i) whether a; is in its blacklist Blisty, and (ii)its frust in cooperation
CT(ay,a;), computed as follows:

Definition 5.4.4. Let NbSoll;[j] be the number of solicitations made by aj, to aj, and NbMemy[j] the
number of times a; joined a coalition with a. Then,

1, if NbSolly[j] = 0
CT(ay,a;) = {NbMemk[J]
NbSolly[j] °

5.11
otherwise ()

If CT'(ax, a;) exceeds the threshold ASup, , member a;, accepts a; by sending an Accepr_Prorosar and
increments NbSolly[j]; otherwise, it replies with a Reject_ProposaL. The broker a, collects all responses
and applies a majority rule. If accepted, a, sends a Prorosk to a; with a membership offer; if rejected, a;
is removed from candP,[z], and synchronization variables are reset. Upon receiving the offer, a; checks
for blacklisted members in c.. If none are found, it evaluates the coalition’s trust level evalC(ay,c,) as
follows:

72 Chapitre 5. Trustworthiness in Service Selection and Composition

Member selection protocol)

: Broker : Member : Member : Candidate

a, ay a, a

LA I
Proposal(MemReg(d(a;))) | :

L

-
: Inform(OK) CHag, aj>Asup, CT(ay,)<Ko,

N

e

count,++ Inform({KO)

Proposal{(MemOff(d(c,)))

L)
1 1
1 |
1]
1 |
count,==|c,| |OK|>[c:1/2 ® Yes 1 1 %, CT(aga4) >B
T ! v] :
1 : Accept |Reject I
LI 1
Accept v] [
Inform(a;€ c,) : : :
|| Updat
Update(c,) | l > pastes :
1 CT{a, aj)d\mfl .
) Confirm (Yes) Updates .
1 1
Update(cz)| count,++ : Failure (3¢ c,) : {a,leaves out c,} :
T | | 1
N | | 1
Figure 5.6: Member Selection Protocol
Definition 5.4.5. Let c, be a coalition and a;, a candidate. Then,
1
evalC(ay,c,) = —‘ | Z CT(ag, at) (5.12)
Cz

at€c,

If evalC(ay, c,) exceeds the threshold i, aj accepts the offer, joins c,, and sends an Accepr to the
broker. Otherwise, it sends a Reject. In case of rejection, a, removes ay from candP,[z] and updates
counter,[z]. If accepted, a, notifies coalition members, updates func,[z], and excludes satisfied function-
alities from further search. If a member disagrees with the addition of ay, (i.e., CT (ax,a;) < AInfy), it may
leave the coalition, blacklist ay, and notify a, via a FAlLurRE message. This dynamic blacklist prevents ping-
pong effects and preserves coalition stability. On receiving CoNFIrRM or FAILURE, a, updates counter,[z]. If
a member leaves, it is removed from c,, its functionalities are restored to func,[z], and the candidate set
is updated. The member selection step for ¢, continues until one of the following termination conditions
is met: (i) all required functionalities are covered, (ii) timeout timer,[2] is reached, or (iii) the maximum
TRSN layer is explored. A refined coalition set C is then passed to the next step.

Step 3: Best Coalition Choice. Our approach aim to address the challenge of identifying multiple can-
didate coalitions and selecting the most suitable one for the requester. To achieve this, the broker begins
by discarding incomplete coalitions, then ranks the remaining ones based on their trust in expertise values.
This value is defined as the average of the expertise scores of all coalition members (see Chapter 2, Equa-
tion 2.5). Each member’s expertise score is computed from the QoS values of the services it contributes
(see Definition 5.4.1). The coalition with the highest trust in expertise is selected as the final composite
service and returned to the user.

5.5 Summary 73

5.5 Summary

In this chapter, we presented the evolving landscape of service-oriented computing and how integrating
social trust and multi-agent systems can enhance service discovery, selection, and composition. After re-
viewing related work, we introduced a trust-based, user-centric perspective that incorporates subjective
perceptions, social context, and historical interactions to evaluate both services and their providers. The
proposed multi-agent system framework models trust through three dimensions, namely social, exper-
tise, and recommendation, leveraging social network analysis and referral systems. After, we proposed
a broker-based coalition formation model for dynamic service composition that adapts to trust dynamics
and agent satisfaction.

CHAPTER

CoNcLUSION AND FUTURE WORK

This chapter gives a summary of my contributions, followed by a presentation of some perspectives towards modern
large-scale service-oriented systems that face two critical challenges: managing the increasing complexity of ser-
vice dependencies, and extracting meaningful insights from service-generated logs. My research project examines
how supply chain principles can address the dependency problem in complex service architectures, and how process
mining can transform service logs into actionable business intelligence.

6.1 Summary of contributions

This manuscript summarized my research work in service-oriented computing, focusing on the integra-
tion of optimization theory and distributed systems to develop solutions for service discovery, selection,
composition, and failure recovery.

First, we tackled service selection and composition by maximizing quality-of-service while preserving
transactional consistency (see Chapter 3). We proposed two main approaches. Heuristic-based methods
that maintain global transactional correctness while optimizing local QoS at the component level. Exact
optimization methods that integrate behavioral specifications with QoS and transactional constraints. We
further enriched these contributions by integrating fairness considerations to ensure equitable service se-
lection, and by formally characterizing the computational complexity of QoS-aware composition problem.
Second, my research work addressed fault tolerance through failure recovery mechanisms to ensure ro-
bust execution in composite services (see Chapter 4). Two primary recovery strategies were introduced.
The first one was a coloured Petri net based modeling approach that supports both forward recovery
(retrying or substituting failed components) and backward recovery (compensation-based rollback to a
consistent state). The second one, a relaxed transactional model based on fuzzy atomicity, allowing partial
successes when acceptable to the user, and including checkpointing for intermediate states preservation,
enabling selective rollback and allowing user-driven control over recovery outcomes based on utility ex-
pectations. Lastly, acknowledging that quality-of-service alone is insufficient to capture the nuances of
trust, we incorporated social, experiential, and relational trust dimensions and proposed two approaches
(see Chapter 5). We proposed a multi-dimensional trust model, for improving service discovery and se-
lection, defining three dimensions: societal (community credibility), expertise (service competence and
reliability), and recommendation (credibility of recommenders). Then, a trust-driven composition ap-
proach within a multi-agent system, in which agents maintain both trust scores (as defined previously)
and trust in cooperation (reflecting the likelihood of successful collaboration). Composition is guided by
dynamic coalition formation, optimizing for both trust thresholds and service quality.

Throughout our contributions, we have assumed that services expose stable functional and non-functional
specifications through their interfaces, with these remaining consistent over time. We have also assumed
a moderate number of services, resulting in dependency graphs of manageable complexity.

76 Chapitre 6. Conclusion and Future work

6.2 Towards Large-scale Service-oriented Systems

Modern software systems rely on services, microservices, and open source libraries to create rapidly de-
ployable applications by leveraging reusable components, thereby reducing development time and pro-
moting continuous integration and delivery (Lewis and Fowler [138]). Although this practice offers un-
precedented scalability and modularity, it poses two significant challenges that have a direct impact on
the maintainability of these systems.

The first challenge stems from the exponential growth of dependencies between services as systems evolve
(Chen [60]). What starts as a manageable set of interconnected services quickly evolves into a complex
dependency graph, prone to the “dependency hell” problem, where managing and updating service de-
pendencies becomes increasingly difficult and error-prone (Dragoni et al. [72]).

The second challenge concerns the vast amounts of log data generated by distributed services. Each
service interaction, transaction, and system event produces log entries that, when properly analyzed, can
reveal critical insights about business processes, performance bottlenecks, and operational patterns. How-
ever, the volume and complexity of these logs make manual analysis impractical, requiring automated
approaches to extract meaningful information.

My future research work, detailed below, will address these two challenges by proposing the applica-
tion of supply chain principles to deal with the complexity of dependencies (Xia et al. [239]), as well as
process mining as a solution for log analysis (Van der Aalst [224]).

Managing Complex and Evolving Service Dependency Graphs

Context. Modern software increasingly rely on the composition of services, microservices, and shared
libraries creating large-scale systems where the number of components and their dependencies grows ex-
ponentially in both size and complexity (Newman [181]). Such systems may include hundreds or even
thousands of components, each with its own set of dependencies, forming an intricate graph of depen-
dencies that is hard to manage or visualize. This phenomenon, commonly referred to as “dependency
hell”, mirrors similar issues faced in software package management but at an architectural level (Abate et
al. [1]). As systems scale, their dependency graphs become increasingly complex, posing significant chal-
lenges to their quality maintenance. Maintaining quality is both a goal and a challenge within this context.
Relying on outdated components creates maintenance debt, as the dependency graph becomes harder to
manage over time.

Moreover, while modularity and independent deployment are strengths of large-scale systems, they
also lead to uncoordinated components evolution. Changes to APIs, contracts, or performance in one com-
ponent may unintentionally affect many others. This evolution problem calls for mechanisms that support
continuous compatibility checking, proactive detection of potential breakages, and automated updates.
Managing evolving dependencies is thus essential for reducing cost, ensuring quality, and maintaining
secure and up-to-date systems.

As part of Damien Jaime’s doctoral thesis, that I have co-supervised with a collegue from Sorbonne
Université, we have established a strong foundation for this research challenge through several contribu-
tions. In Jaime et al. [123], we proposed a tool-based solutions for analyzing dependencies of a project,
capable of scaling up to complete ecosystems of dependencies (such as Java/Maven with its millions of
libraries and hundreds of millions of dependency relationships). This work demonstrated the feasibil-
ity of large-scale dependency analysis and established baseline performance metrics for ecosystem-wide
analysis. After that, in Jaime et al. [125], we developed a solution based on multi-objective, multi-criteria
optimization for constructing dependency evolution plans. This solution integrates quality and security
criteria while accounting for possible disruptive changes, providing an approach to dependency man-
agement that balances multiple competing objectives. The datasets and tools developed as part of this
initial work were successfully utilized in a major data mining challenge, demonstrating their practical
applicability and robustness at scale (Jaime et al. [124]).

Objective. Building on our previous contributions, our future research aims to address several issues in
managing dependencies, particularly in large-scale systems:

6.2 Towards Large-scale Service-oriented Systems 77

e Vulnerability assessment: dependencies are part of the broader software supply chain and can be a
significant entry point for cyberattacks if left unpatched. When vulnerabilities are disclosed through
CVEs (Common Vulnerabilities and Exposures), their severity is rated, helping both maintainers
and users prioritize updates. However, due to the complexity of dependency graphs, especially
transitive dependencies, developers may be unaware of vulnerable dependencies within their code-
base.

e Dependency updates and compatibility: updating dependencies can introduce breaking changes
due to API incompatibilities. Even with semantic versioning, upgrades, particularly across major
versions, remain risky when driven by security or performance requirements. In large-scale systems,
version conflicts are common, especially in ecosystems like Java/Maven where only one version of
a library can be used, making dependency resolution complex.

Methodology. Inspired by traditional supply chain management, we propose applying its principles to
software dependency management, using the Software Bill of Materials (SBOM) as a central organizing
concept (Mirakhorli et al. [173]). An SBOM offers a machine-readable inventory of all components and
dependencies within a software system and is increasingly mandated by regulations such as the EU’s
Cyber Resilience Act (2024/2847). SBOMs help assess whether a system is theoretically affected by known
vulnerabilities and support informed risk mitigation. However, current SBOM standards and tools such as
SPDX and CycloneDX face limitations in automation, expressiveness, and actionable analysis (Stalnaker
etal. [210]). Our future research aims to address these shortcomings as well as the above identified issues
through the following directions:

e Formal SBOM modeling: existing SBOM formats lack formal semantics for automated reasoning.
We propose to define a structured and formal SBOM model to support precise analysis and tool
integration.

e Extended dependency analysis: we aim to expand SBOM content to cover broader build-related
elements such as language versions, compilers, and builders. This extension should be a key for
detecting obsolescence or supply chain risks.

e Vulnerability assessment: taking into account the actual impact of risks. As opposed to current
approaches based on simple dependency path analysis (SBOM declares a direct or indirect depen-
dency on a vulnerable element), it will be necessary to analyse the code from a semantic perspective
(the context of use means that the vulnerability can actually be triggered) in order to rule out false
negatives (O’Donoghue et al. [183]).

e SBOM updates: we propose developing algorithms that enable automated SBOM updates to ad-
dress identified issues while minimizing disruption to system functionality.

e Automated code repair: based on SBOM diffs and patterns learned from dependency graphs across
ecosystems, we aim to develop tools for recommending or performing safe code and configuration
repairs automatically.

Managing complex and evolving dependency graphs is a key challenge in modern large-scale soft-
ware systems. This research proposal presents an approach that combines formal modeling, algorithmic
techniques, and supply chain principles to improve maintainability and automation in dependency man-
agement. By leveraging Software Bill of Materials (SBOMSs) as a central tool, this research proposal aims
to transform how dependencies are understood and managed, providing structured insight and auto-
mated support for updates and evolution. Looking ahead, future extensions of this research may include
machine learning-based analysis for even more sophisticated dependency management.

This future research work will be part of Fanuel Mehari doctoral thesis (2025—) thatI will co-supervised
with a colleague from Sorbonne Université.

78 Chapitre 6. Conclusion and Future work

Object-Centric Process Mining for Service-oriented Systems

Context. Service-oriented business processes have become foundational to modern organizations, which
rely on interconnected services to deliver business capabilities. These large-scale systems generate vast
volumes of event logs, capturing service interactions, transactions, and system events. Such logs are rich
in information about process execution, service behavior, performance metrics, and system interactions,
making them valuable for understanding and optimizing organizational operations (Dumas et al. [74],
Van der Aalst [224]). However, extracting actionable insights from this complex data requires advanced
analytical techniques.

Traditional process mining methods have proven effective in discovering process flows, identifying
bottlenecks, and detecting deviations from expected behavior (Van der Aalst [223]). Yet, they are fun-
damentally constrained by a single-case perspective, assuming each event belongs to exactly one process
instance. This model falls short in service-oriented systems, where processes span multiple services, in-
volve various entities, and exhibit complex many-to-many relationships between events and cases. Object-
Centric Process Mining (OCPM) addresses these limitations by offering a more holistic view. Rather than
relying on a single case notion, OCPM considers multiple object types and allows events to involve multi-
ple objects (Van der Aalst[225]), Berti and Van der Aalst [27]). This multidimensional approach enables
richer process analysis and is more aligned with the realities of service-oriented systems. Moreover, the
complexity and granularity of object-centric data open new opportunities for advanced prediction and
automation tasks that were previously infeasible in traditional process mining settings (Ghahfarokhi et
al. [97]).

As part of Wissam Gherissi’s doctoral thesis, we proposed several contributions that aimed at effec-
tively exploiting object-centred information to improve predictive performance. In Gherissi et al. [99], we
proposed a flattening-based approach that integrated object-centric information through explicit feature
engineering. Combined with sequential deep learning models, this approach proved effective across var-
ious predictive tasks, including a dedicated method for remaining time prediction. In Gherissi et al. [98],
we introduced an end-to-end deep learning model that integrates graph-based structural encoding using
Graph Attention Networks (GAT) with sequential temporal modeling via LSTM. This hybrid approach
enhances predictive accuracy by capturing both structural context and temporal dependencies within
flattened object-centric event logs (OCELs). Lastly, in Gherissi et al. [100], we presented a modular and
extensible framework for Object-Centric Predictive Process Monitoring (OCPPM). This framework uni-
fies the development and evaluation of OCPPM approaches by organizing the prediction pipeline into
configurable components, allowing flexible experimentation with preprocessing techniques, data repre-
sentations, graph embeddings, and predictive models.

Objective. Object-centric predictive process monitoring approaches have mainly extended traditional pre-
diction tasks, such as remaining time estimation and next activity forecasting, to multi-object scenarios
(Galanti et al. [91]). However, the rich relational structures and temporal dynamics inherent in object-
centric data open the door to new classes of predictions, offering deeper insights into process behavior
and enabling more advanced management strategies. To further build on our previous contributions, we
identify several key directions for advancing the field:

e Anomaly detection and prediction: traditional anomaly detection focuses on deviations within indi-
vidual cases. In object-centric settings, however, anomalies often arise from interactions between ob-
jects, cascading failures, or implicit cross-object constraints that are invisible when analyzing objects
inisolation (Yeshchenko etal. [247]). These include temporal synchronization anomalies (i.e., unex-
pected timing relationships between linked objects), interaction pattern anomalies (i.e., deviations
in the nature or frequency of inter-object interactions), or cascade failure (i.e., failures propagating
across object types).

e Causal inference in object-centric processes: understanding causality is important for intervention
and optimization. Unlike correlation-based methods, causal inference answers “what-if” questions.
This is particularly complex in multi-object settings due to inter-object confounding (i.e., multiple
pathways of influence between objects), or causal relationships that evolve over time.

6.2 Towards Large-scale Service-oriented Systems 79

e Predictive maintenance and resource optimization: in object-centric environments, resources often
serve multiple object types with diverse and evolving needs. Effective optimization must account for
multi-object resource dependencies (i.e., shared resources with varying priority levels across object
types), cascading resource failures (i.e., one resource’s failure may differently affect multiple object
types), and dynamic resource requirements (i.e., object-specific needs that vary with process state
or external factors).

Methodology. To address these three directions, we propose a develop a comprehensive framework that in-
tegrates advanced object-centric process mining techniques, analytical methods and automation. The aim
is to support complex large-scale service-oriented systems in which multiple objects interact dynamically.

e Graph-based anomaly detection: we propose to develop an approach based on multi-layer Graph
Neural Network (GNN) architecture for modeling both intra-object temporal patterns and inter-
object relational dynamics. Object-centric data can be encoded as dynamic heterogeneous graphs,
where nodes represent individual object instances (e.g., orders, customers, products), and edges de-
note interactions or relationships among them. Both nodes and edges can be enriched with temporal
attributes to capture event timings and durations.

o Causal inference in multi-object temporal graphs: understanding causality in object-centric environ-
ments is essential for reliable prediction and intervention. To this end, we propose leveraging deep
learning methods to learn causal embeddings that represent object-object dependencies, enabling
both causal discovery and prediction.

e Reinforcement learning for resource optimization: in dynamic service-oriented systems, resources
are often shared among multiple object types. To support adaptive, efficient allocation and schedul-
ing, we propose to use a reinforcement learning approach to forecast short and long-term resource
demands, informed by the historical behavior of object types.

This future research work will be part of Silas Workman’s doctoral thesis (2025—) that I will co-supervised
with a colleague from Paris Dauphine Université.

BIBLIOGRAPHY

Self-citations appear in color.

[1]

(2]

P. Abate, R. Di Cosmo, J. Boender, and S. Zacchiroli. Strong dependencies between software compo-
nents. In 2009 3rd International Symposium on Empirical Software Engineering and Measurement, pages
89-99. IEEE, 2009. 76

A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In Proceedings of the 33rd
annual Hawaii international conference on system sciences, pages 9-pp. IEEE, 2000. 61

FE. N. Abu-Khzam, C. Bazgan, J. El Haddad, and F. Sikora. On the complexity of qos-aware ser-
vice selection problem. In International Conference on Service-Oriented Computing, pages 345-352.
Springer, 2015. 10, 11, 21, 26, 37

P. S. Adler. Market, hierarchy, and trust: The knowledge economy and the future of capitalism.
Organization science, 12(2):215-234, 2001. 61

A. Agresti. Categorical data analysis, volume 792. John Wiley & Sons, 2012. 4

J. Al-Sharawneh. Social networks: Service selection and recommendation. University of Technology
Sydney (Australia), 2012. 59, 61

J. Al-Sharawneh and M.-A. Williams. Abms: Agent-based modeling and simulation in web service
selection. In 2009 International Conference on Management and Service Science, pages 1-6. IEEE, 2009.
62

A. Alhosban, Z. Malik, K. Hashmi, B. Medjahed, and H. Al-Ababneh. A two phases self-healing
framework for service-oriented systems. ACM Transactions on the Web (TWEB), 15(2):1-25, 2021. 43

G. Alonso, F. Casati, H. Kuno, V. Machiraju, G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
services. Springer, 2004. 5

M. Alrifai and T. Risse. Combining global optimization with local selection for efficient qos-aware
service composition. In Proceedings of the 18th international conference on World wide web, pages 881—
890, 2009. 5, 24

M. Alrifai, T. Risse, and W. Nejdl. A hybrid approach for efficient web service composition with
end-to-end qos constraints. ACM Transactions on the Web (TWEB), 6(2):1-31, 2012. 23

V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena. Refactoring product lines.
In Proceedings of the 5th international conference on Generative programming and component engineering,
pages 201-210, 2006. 36

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, et al. Business process execution language for web services, 2003. 6

R. Angarita, Y. Cardinale, and M. Rukoz. Faceta: Backward and forward recovery for execution of
transactional composite ws. In Extended Semantic Web Conference, pages 343-357. Springer, 2012. 6,
43

82

BIBLIOGRAPHY

[15]

[16]

[17]

R. Angarita, M. Rukoz, and Y. Cardinale. Modeling dynamic recovery strategy for composite web
services execution. World Wide Web, 19:89-109, 2016. 18

D. Ardagna and B. Pernici. Global and local qos guarantee in web service selection. In International
Conference on Business Process Management, pages 32—46. Springer, 2005. 23, 26, 37

D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. IEEE Transactions
on software engineering, 33(6):369-384, 2007. 5, 23

E. K. Asl, J. Bentahar, H. Otrok, and R. Mizouni. Efficient coalition formation for web services. In
2013 IEEE International Conference on Services Computing, pages 737-744. IEEE, 2013. 62, 64

P. K. Atrey, M. A. Hossain, and A. El Saddik. Association-based dynamic computation of reputation
in web services. International Journal of Web and Grid Services, 4(2):169-188, 2008. 5

I. Awan, M. Younas, and S. Benbernou. Convergence of cloud, internet of things, and big data: New
platforms and applications, 2021. 24

V. Azevedo, M. Mattoso, and P. Pires. Handling dissimilarities of autonomous and equivalent web
services. Proc. of Caise-WES, 2003. 48

S. K. Bansal, A. Bansal, and M. B. Blake. Trust-based dynamic web service composition using social
network analysis. In 2010 IEEE International Workshop on: Business Applications of Social Network
Analysis (BASNA), pages 1-8. IEEE, 2010. 59, 62, 63, 65

T. Bellwood, S. Capell, L. Clement, J. Colgrave, M. Dovey, D. Feygin, A. Kochman, P. Macias,
M. Novotny, M. Paolucci, et al. Universal description, discovery and integration specification (uddi)
3.0. Online: http:/ /www.uddi.org/pubs /uddi-v3.00-published-20020719.htm, 2002. 1

N. Ben Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Issarny. Qos-aware service
composition in dynamic service oriented environments. In Middleware 2009: ACM/IFIP/USENIX,
10th International Middleware Conference, Urbana, IL, USA, November 30—December 4, 2009. Proceedings
10, pages 123-142. Springer, 2009. 5, 24

B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On automating web services discovery.
The VLDB Journal, 14(1):84-96, 2005. 5

E. Berscheid and H. T. Reis. Attraction and close relationships. In D. Gilbert, S. T. Fiske, and
G. Lindzey, editors, Handbook of Social Psychology, pages 193-281. Oxford University Press, 4 edi-
tion, 1998. 61, 67

A. Berti and W. M. Van der Aalst. Oc-pm: analyzing object-centric event logs and process models.
International Journal on Software Tools for Technology Transfer, 25(1):1-17,2023. 78

A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli. Automatic synthesis of behavior protocols
for composable web-services. In Proceedings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering, pages 141-150,
2009. 2

A. Beugnard,].-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components contract aware.
Computer, 32(7):38-45,1999. 2

S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure atomicity of composite web services.
In Proceedings of the 14th international conference on World Wide Web, pages 138-147, 2005. 15, 23, 24,
25

S. Bhiri, O. Perrin, and C. Godart. Extending workflow patterns with transactional dependencies to
define reliable composite web services. In Advanced Int’l Conference on Telecommunications and Int’l
Conference on Internet and Web Applications and Services (AICT-ICIW’06), pages 145-145. IEEE, 2006.
23,24

BIBLIOGRAPHY 83

[32]

[33]

[34]

[46]

[47]

H. Billhardt, R. Hermoso, S. Ossowski, and R. Centeno. Trust-based service provider selection in
open environments. In Proceedings of the 2007 ACM symposium on Applied computing, pages 1375-
1380, 2007. 59, 61, 62

E. Billionniere, D. Greiman, and K. Gosha. A comparison of social service selection techniques.
In 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, pages
260-265. IEEE, 2009. 62

E. Blanco, Y. Cardinale, M.-E. Vidal,]. El Haddad, M. Manouvrier, and M. Rukoz. A transactional-
qos driven approach for web service composition. In International Workshop on Resource Discovery,
pages 23—42. Springer, 2012. 10, 11, 21, 25, 29

P. A. Bonatti and P. Festa. On optimal service selection. In Proceedings of the 14th international confer-
ence on World Wide Web, pages 530-538, 2005. 5, 7, 23, 26

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard. Web services
architecture. Online: https:/ /www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/, 2004. 1

A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu, A. G. Neiat, S. Mistry, B. Bena-
tallah, B. Medjahed, et al. A service computing manifesto: the next 10 years. Communications of the
ACM, 60(4):64-72,2017. 5

J. Bourdon, L. Vercouter, and T. Ishida. A multiagent model for provider-centered trust in composite
web services. In International Conference on Principles and Practice of Multi-Agent Systems, pages 216—
228. Springer, 2009. 62, 64

M. Brambilla, S. Ceri, S. Comai, and C. Tziviskou. Exception handling in workflow-driven web
applications. In Proceedings of the 14th international conference on World Wide Web, pages 170-179,
2005. 42

A. Brogi, S. Corfini, and R. Popescu. Semantics-based composition-oriented discovery of web ser-
vices. ACM Transactions on Internet Technology (TOIT), 8(4):1-39, 2008. 24, 31

K. Bryson, M. Luck, M. Joy, and D. T. Jones. Applying agents to bioinformatics in geneweaver. In
International Workshop on Cooperative Information Agents, pages 60-71. Springer, 2000. 64

T. Burnaby. On a method for character weighting a similarity coefficient, employing the concept of
information. Journal of the International Association for Mathematical Geology, 2(1):25-38, 1970. 66

C. Canal, J. M. Murillo, P. Poizat, et al. Software adaptation. Obj. Logiciel Base données Réseaux,
12(1):9-31, 2006. 2

G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An approach for qos-aware service composi-
tion based on genetic algorithms. In Proceedings of the 7th annual conference on Genetic and evolutionary
computation, pages 1069-1075, 2005. 23

V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola. Qos-driven runtime adapta-
tion of service oriented architectures. In Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering,
pages 131-140, 2009. 5

V. Cardellini, E. Casalicchio, V. Grassi, and F. L. Presti. Flow-based service selection forweb service
composition supporting multiple qos classes. In IEEE International Conference on Web Services (ICWS
2007), pages 743-750. IEEE, 2007. 5, 23

Y. Cardinale, J. El1 Haddad, M. Manouvrier, and M. Rukoz. Web service selection for transactional
composition. In International Conference on Computational Science (ICCS), pages 2683-2692, 2010. 10,
11,21, 25,29

84

BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[60]

[61]

[62]

Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Cpn-tws: a coloured petri-net approach
for transactional-qos driven web service composition. International Journal of Web and Grid Services,
7(1):91-115, 2011. 10, 11, 21, 25, 26, 29, 44

Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Transactional-aware web service com-
position: a survey. In Handbook of Research on Service-Oriented Systems and Non-Functional Properties:
Future Directions, pages 116-141. IGI Global, 2011. 24

Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Web service composition based on
petri nets: Review and contribution. In International Workshop on Resource Discovery, Revised Selected
Papers, LNCS 8194, pages 83-122. Springer, 2013. 10, 11, 39, 43, 44

Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Measuring fuzzy atomicity for composite
service execution. In 2016 2nd International Conference on Open and Big Data (OBD), pages 62-71.
1IEEE, 2016. 10, 11, 39, 43, 51

Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Fuzzy acid properties for self-
adaptive composite cloud services execution. Concurrency and Computation: Practice and Experience,
31(2):e4360, 2019. 10, 11, 39, 43, 51

Y. Cardinale and M. Rukoz. Fault tolerant execution of transactional composite web services: An
approach. In Proc. Fifth Int, Conf. on Mobile Ubiquitous Computing, Systems, Services and Technologies,
pages 158-164, 2011. 48

Y. Cardinale and M. Rukoz. A framework for reliable execution of transactional composite web
services. In Proceedings of the International Conference on Management of Emergent Digital Ecosystems,
pages 129-136, 2011. 43

Y. Cardinale, M. Rukoz, and R. Angarita. Modeling snapshot of composite ws execution by colored
petrinets. In Resource Discovery: 5th International Workshop, RED 2012, Co-located with the 9th Extended
Semantic Web Conference, ESWC 2012, Heraklion, Greece, May 27, 2012, Revised Selected Papers 5, pages
23-44. Springer, 2013. 42

J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for workflows and web
service processes. Journal of web semantics, 1(3):281-308, 2004. 5

F. Casati and G. Cugola. Error handling in process support systems. In Advances in Exception
Handling Techniques, pages 251-270. Springer, 2001. 42

K. Chard, K. Bubendorfer, S. Caton, and O. F. Rana. Social cloud computing: A vision for socially
motivated resource sharing. IEEE Transactions on services computing, 5(4):551-563, 2011. 59

Y. Charif and N. Sabouret. Dynamic service composition enabled by introspective agent coordina-
tion. Autonomous agents and multi-agent systems, 26(1):54-85, 2013. 62

L. Chen. Microservices: architecting for continuous delivery and devops. In 2018 IEEE International
conference on software architecture (ICSA), pages 39-397. IEEE, 2018. 76

M. Chen and J. P. Singh. Computing and using reputations for internet ratings. In Proceedings of the
3rd ACM conference on Electronic Commerce, pages 154-162, 2001. 67

S. Chen and K. Nahrstedt. Distributed quality-of-service routing in ad hoc networks. IEEE Journal
on Selected areas in Communications, 17(8):1488-1505, 1999. 4

H. Cheng, M. Zhong, and J. Wang. Diversified keyword search based web service composition.
Journal of Systems and Software, 163:110540, 2020. 5

R. Chinnicii, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web services description language
(wsdl) version 2.0. Online: https:/ /www.w3.org/TR/wsdl/, 2007. 1

BIBLIOGRAPHY 85

[65]

[66]

[67]

[68]

L. Cili¢, V. Jukanovi¢, I. P. Zarko, P. Frangoudis, and S. Dustdar. Qedgeproxy: Qos-aware load
balancing for iot services in the computing continuum. In 2024 IEEE International Conference on
Edge Computing and Communications (EDGE), pages 67-73. IEEE, 2024. 24

R. L. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE Journal on
Selected areas in Communications, 13(6):1048-1056, 1995. 5

I. da Silva and A. Zisman. A framework for trusted services. In International Conference on Service-
Oriented Computing, pages 328-343. Springer, 2012. 59

J. Day and R. Deters. Selecting the best web service. In Proceedings of the 2004 conference of the Centre
for Advanced Studies on Collaborative research, pages 293-307, 2004. 62, 63

J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer, B. Kénig-Ries, J. Kopecky,
R. Lara, E. Oren, et al. Web service modeling ontology (wsmo). Interface, 5(1):50, 2005. 2

V. Dialani, S. Miles, L. Moreau, D. De Roure, and M. Luck. Transparent fault tolerance for web
services based architectures. In Euro-Par 2002 Parallel Processing: 8th International Euro-Par Conference
Paderborn, Germany, August 27-30, 2002 Proceedings 8, pages 889-898. Springer, 2002. 6

P. Dolog, M. Schifer, and W. Nejdl. Design and management of web service transactions with
forward recovery. In Advanced Web Services, pages 3-27. Springer, 2013. 6

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.
Microservices: yesterday, today, and tomorrow. Present and ulterior software engineering, pages 195
216,2017. 76

M. Drezza. The qos-aware web service composition problem: a new approach for the selection step,
2014. 37

M. Dumas, L. M. Rosa, J. Mendling, and A. H. Reijers. Fundamentals of business process management.
Springer, 2018. 78

S. Dustdar, D. Schall, F. Skopik, L. Juszczyk, and H. Psaier. Socially enhanced services computing:
modern models and algorithms for distributed systems. Springer Science & Business Media, 2011. 59

S. Dustdar and W. Schreiner. A survey on web services composition. International journal of web and
grid services, 1(1):1-30, 2005. 5

M. Eid, A. Alamri, and A. El Saddik. A reference model for dynamic web service composition
systems. International Journal of Web and Grid Services, 4(2), 2008. 5

J. El Hadad, M. Manouvrier, and M. Rukoz. Tqos: Transactional and qos-aware selection algorithm
for automatic web service composition. IEEE Transactions on Services Computing, 3(1):73-85, 2010.
10,11, 19, 21, 25, 27

J. El Haddad. Optimization techniques for qos-aware workflow realization in web services context.
In International Workshop on Resource Discovery, Revised Selected Papers, LNCS6799, pages 134-149.
Springer, 2012. 23

J. El Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz. Qos-driven selection of web services
for transactional composition. In 2008 IEEE International Conference on Web Services (ICWS), pages
653-660, 2008. 10, 11, 21, 25, 27

J. El Haddad, M. Manouvrier, and M. Rukoz. A hierarchical model for transactional web service
composition in p2p networks. In IEEE International Conference on Web Services (ICWS), pages 346
353,2007. 39, 44, 57

J. El Haddad and O. Spanjaard. Composition de services web et équité vis-a-vis des utilisateurs
finaux. ROADEF 2009, page 251, 2009. 10, 11, 21, 25, 26, 32, 34

86

BIBLIOGRAPHY

[83]

[84]
[85]

[99]

[100]

[101]

R. ElIGhondakly, S. M. Moussa, and N. Badr. Service-oriented model-based fault prediction and
localization for service compositions testing using deep learning techniques. Applied Soft Computing,
143:110430, 2023. 43

T. Erl. Service-oriented architecture: concepts, technology, and design. Pearson Education India, 1900. 1

V. Ermolayev, N. Keberle, and S. Plaksin. Towards agent-based rational service composition—racing
approach. In International Conference on Web Services, pages 167-182. Springer, 2003. 62, 64

C.-L.Fang, D. Liang, F. Lin, and C.-C. Lin. Fault tolerant web services. Journal of Systems Architecture,
53(1):21-38, 2007. 5

J. Farrell and H. Lausen. Semantic annotations for wsdl and xml schema. W3C recommendation, 28,
2007. 2

G. Friedrich, M. G. Fugini, E. Mussi, B. Pernici, and G. Tagni. Exception handling for repair in
service-based processes. IEEE Transactions on Software Engineering, 36(2):198-215, 2010. 42

W. Gaaloul, S. Bhiri, and M. Rouached. Event-based design and runtime verification of composite
service transactional behavior. IEEE transactions on services computing, 3(1):32-45, 2010. 15

V. Gabrel, M. Manouvrier, and C. Murat. Web services composition: complexity and models. Dis-
crete Applied Mathematics, 196:100-114, 2015. 23

R. Galanti, M. De Leoni, N. Navarin, and A. Marazzi. Object-centric process predictive analytics.
Expert Systems with Applications, 213:119173, 2023. 78

N. Gamez,]. El Haddad, and L. Fuentes. Managing the variability in the transactional services
selection. In Proceedings of the 9th International Workshop on Variability Modelling of Software-intensive
Systems, pages 88-95, 2015. 10, 11, 21, 26, 34

N. Gamez,]J. El Haddad, and L. Fuentes. Spl-tgsss: a software product line approach for stateful
service selection. In 2015 IEEE International Conference on Web Services, pages 73-80. IEEE, 2015. 10,
11,21, 26, 34

L. Gao, S. D. Urban, and J. Ramachandran. A survey of transactional issues for web service com-
position and recovery. International Journal of Web and Grid Services, 7(4):331-356, 2011. 6, 42

S. K. Gavvala, C. Jatoth, G. Gangadharan, and R. Buyya. Qos-aware cloud service composition
using eagle strategy. Future Generation Computer Systems, 90:273-290, 2019. 7

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In AAAI, volume 87, pages
677-682,1987. 64

A. F. Ghahfarokhi, G. Park, A. Berti, and W. M. van der Aalst. Ocel: a standard for object-centric
event logs. In European Conference on Advances in Databases and Information Systems, pages 169-175.
Springer, 2021. 78

W. Gherissi, M. Acheli,]. El Haddad, and D. Grigori. Predictive process monitoring using object-
centric graph embeddings. In International Conference on Service-Oriented Computing, pages 55-67.
Springer, 2024. 78

W. Gherissi, J. El Haddad, and D. Grigori. Object-centric predictive process monitoring. In Interna-
tional Conference on Service-Oriented Computing, pages 27-39. Springer, 2022. 78

W. Gherissi,]. El Haddad, and D. Grigori. A framework for object-centric predictive process moni-
toring using graph-based process executions. In IEEE International Conference on Web Services ICWS,
2025. 78

J. Golbeck. Generating predictive movie recommendations from trust in social networks. In Inter-
national Conference on Trust Management, pages 93-104. Springer, 2006. 62, 63, 67

BIBLIOGRAPHY 87

[102] V. Grassi and S. Patella. Reliability prediction for service-oriented computing environments. IEEE
Internet Computing, 10(3):43-49, 2006. 5

[103] J. Gray. The transaction concept: Virtues and limitations. In VLDB, volume 81, pages 144-154, 1981.
22

[104] N. Griffiths and M. Luck. Coalition formation through motivation and trust. In Proceedings of the
second international joint conference on Autonomous agents and multiagent systems, pages 17-24, 2003.
62, 64

[105] D. Grigori, J. C. Corrales, and M. Bouzeghoub. Behavioral matchmaking for service retrieval. In
2006 IEEE International Conference on Web Services (ICWS’06), pages 145-152. IEEE, 2006. 5

106] D. Grigori, J. C. Corrales, and M. Bouzeghoub. Behavioral matchmaking for service retrieval: Ap-
g g g P
plication to conversation protocols. Information Systems, 33(7-8):681-698, 2008. 2

[107] O.M. Group. Business process model and notation, 2014. 6

[108] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot): A vision, architectural
elements, and future directions. Future generation computer systems, 29(7):1645-1660, 2013. 5

[109] C.Hagen and G. Alonso. Exception handling in workflow management systems. IEEE Transactions
on software engineering, 26(10):943-958, 2002. 42

[110] R. Hamadi and B. Benatallah. A petri net-based model for web service composition. In Proceedings
of the 14th Australasian database conference-Volume 17, pages 191-200, 2003. 6

[111] M. Hammoum, M. E. Khanouche, N. Khoulalene, and B. Benatallah. Uncertainty qos-aware services
composition: a systematic literature review for services community. Service Oriented Computing and
Applications, 18(2):121-143, 2024. 24

[112] C.-W.Hang and M. P. Singh. Trust-based recommendation based on graph similarity. In Proceedings
of the 13th international workshop on trust in agent societies (TRUST). Toronto, Canada, volume 82, 2010.
63

[113] C.-W.Hang, Y. Wang, and M. P. Singh. Operators for propagating trust and their evaluation in social
networks. In Proceedings of The 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 1025-1032, 2009. 62, 63

[114] Q.He,]. Yan, H.Jin, and Y. Yang. Quality-aware service selection for service-based systems based on
iterative multi-attribute combinatorial auction. IEEE Transactions on Software Engineering, 40(2):192—
215,2014. 38

[115] Q. He, R. Zhou, X. Zhang, Y. Wang, D. Ye, F. Chen, J. C. Grundy, and Y. Yang. Keyword search for
building service-based systems. IEEE Transactions on Software Engineering, 43(7):658-674, 2016. 5

[116] D. Hutchison, G. Coulson, A. Campbell, and G. S. Blair. Quality of service management in dis-
tributed systems. Network and Distributed Systems Management, 1(273-303):13, 1994. 5

[117] T.D.Huynh, N. R. Jennings, and N. R. Shadbolt. An integrated trust and reputation model for open
multi-agent systems. Autonomous agents and multi-agent systems, 13(2):119-154, 2006. 62

[118] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen. Dynamic web service selection for reliable web
service composition. IEEE Transactions on services computing, 1(2):104-116, 2008. 5

[119] A. Immonen and D. Pakkala. A survey of methods and approaches for reliable dynamic service
compositions. Service Oriented Computing and Applications, 8(2):129-158, 2014. 42

[120] V. Issarny, F. Tartanoglu, A. Romanovsky, and N. Levy. Coordinated forward error recovery for
composite web services. In 22nd International Symposium on Reliable Distributed Systems, 2003. Pro-
ceedings., pages 167-176. IEEE, 2003. 6

88 BIBLIOGRAPHY

[121] D.Izquierdo, M.-E. Vidal, and B. Bonet. An expressive and efficient solution to the service selection
problem. In The Semantic Web—ISWC 2010: 9th International Semantic Web Conference, ISWC 2010,
Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 1 9, pages 386—401. Springer, 2010.
24

[122] M. C.Jaeger, G. Rojec-Goldmann, and G. Muhl. Qos aggregation for web service composition using
workflow patterns. In Proceedings. Eighth IEEE International Enterprisei Distributed Object Computing
Conference, 2004. EDOC 2004., pages 149-159. IEEE, 2004. 4, 13, 22, 23

[123] D.Jaime, J. El1 Haddad, and P. Poizat. Goblin: A framework for enriching and querying the maven
central dependency graph. In Proceedings of the 21st International Conference on Mining Software Repos-
itories, pages 37-41, 2024. 76

[124] D.Jaime,]. El Haddad, and P. Poizat. Navigating and exploring software dependency graphs using
goblin. In 2025 IEEE | ACM 22nd International Conference on Mining Software Repositories (MSR), pages
369-371. IEEE, 2025. 76

[125] D. Jaime, P. Poizat, J. El Haddad, and T. Degueule. Balancing the quality and cost of updating
dependencies. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software
Engineering, pages 1834-1845, 2024. 76

[126] C.]Jatoth, G. Gangadharan, and R. Buyya. Computational intelligence based qos-aware web service
composition: a systematic literature review. IEEE Transactions on Services Computing, 10(3):475-492,
2015. 7

[127] S. Kalepu, S. Krishnaswamy, and S. W. Loke. Reputation= f (user ranking, compliance, verity). In
Proceedings. IEEE International Conference on Web Services, 2004., pages 200-207. IEEE, 2004. 62, 63

[128] K. Khadir, N. Guermouche, A. Guittoum, and T. Monteil. A genetic algorithm-based approach for
fluctuating qos aware selection of iot services. IEEE Access, 10:17946-17965, 2022. 24

[129] M. Klusch and K. Sycara. Brokering and matchmaking for coordination of agent societies: A survey.
In Coordination of Internet agents: models, technologies, and applications, pages 197-224. Springer, 2001.
69

[130] N. Kokash and V. D’Andrea. Evaluating quality of web services: A risk-driven approach. In Inter-
national Conference on Business Information Systems, pages 180-194. Springer, 2007. 23

[131] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications, volume 14. Springer Science
& Business Media, 1996. 34

[132] K. Kritikos, B. Pernici, P. Plebani, C. Cappiello, M. Comuzzi, S. Benbernou, I. Brandic, A. Kertész,
M. Parkin, and M. Carro. A survey on service quality description. ACM Computing Surveys (CSUR),
46(1):1-58,2013. 3, 4

[133] N. B. Lakhal, T. Kobayashi, and H. Yokota. Fenecia: failure endurable nested-transaction based
execution of composite web services with incorporated state analysis. The VLDB Journal, 18(1):1-
56, 2009. 24, 43

[134] F. Lalanne, A. Cavalli, and S. Maag. Quality of experience as a selection criterion for web services.
In 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pages
519-526. IEEE, 2012. 16, 61, 62, 66

[135] D.Le Tien, O. Villin, and C. Bac. Corba application tailored manager for quality of service support.
In Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2000) (Cat. No. PR00607), pages 52-59. IEEE, 2000. 5

[136] K. Lee, K. C. Kang, and J. Lee. Concepts and guidelines of feature modeling for product line soft-
ware engineering. In International Conference on Software Reuse, pages 62-77. Springer, 2002. 26

BIBLIOGRAPHY 89

[137] A. L. Lemos, F. Daniel, and B. Benatallah. Web service composition: a survey of techniques and
tools. ACM Computing Surveys (CSUR), 48(3):1-41, 2015. 6

[138] J. Lewis and M. Fowler. Microservices: a definition of this new architectural term. MartinFowler.
com, 25(14-26):12, 2014. 76

[139] L. Li, C. Liu, and J. Wang. Deriving transactional properties of compositeweb services. In IEEE
International Conference on Web Services (ICWS 2007), pages 631-638. IEEE, 2007. 15, 23, 24

[140] L.Liand Y. Wang. The roadmap of trust and trust evaluation in web applications and web services.
In Advanced Web Services, pages 75-99. Springer, 2013. 61

[141] L.Li, Y. Wang, and E.-P. Lim. Trust-oriented composite service selection and discovery. In European
Conference on a Service-Based Internet, pages 50-67. Springer, 2009. 59, 61

[142] M. Li, Z. Hua, J. Zhao, Y. Zou, and B. Xie. Arima model-based web services trustworthiness eval-
uation and prediction. In International Conference on Service-Oriented Computing, pages 648—655.
Springer, 2012. 59, 61, 62

[143] Q. A. Liang and S. Y. Su. And/or graph and search algorithm for discovering composite web ser-
vices. International Journal of Web Services Research (IJWSR), 2(4):48-67, 2005. 6

[144] A.Liu, L. Huang, and Q. Li. Qos-aware web services composition using transactional composition
operator. In International Conference on Web-Age Information Management, pages 217-228. Springer,
2006. 22,42

[145] A.Liu, L. Huang, Q. Li, and M. Xiao. Fault-tolerant orchestration of transactional web services. In
International Conference on Web Information Systems Engineering, pages 90-101. Springer, 2006. 41, 42

[146] A.Liu, Q.Li, L. Huang, and M. Xiao. Facts: A framework for fault-tolerant composition of transac-
tional web services. IEEE Transactions on Services Computing, 3(1):46-59, 2009. 24, 39, 42

[147] A.Liu, H. Liu, Q. Li, L.-S. Huang, and M.-J. Xiao. Constraints-aware scheduling for transactional
services composition. Journal of Computer Science and Technology, 24(4):638-651, 2009. 24

[148] G.Liu and Y. Wang. Trust-oriented service provider selection in complex online social networks.
In Advanced Web Services, pages 363-380. Springer, 2013. 61, 62

[149] G.Liu, Y. Wang, and M. Orgun. Trust transitivity in complex social networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 25, pages 1222-1229, 2011. 62, 63

[150] H. Liu, W. Zhang, K. Ren, Z. Zhang, and C. Liu. A risk-driven selection approach for transactional
web service composition. In 2009 Eighth International Conference on Grid and Cooperative Computing,
pages 391-397. IEEE, 2009. 24

[151] F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane-Cherif. Quality characteristics for software archi-
tecture. Journal of object Technology, 2(2):133-150, 2003. 3

[152] A. Louati, J. El Haddad, and S. Pinson. Trust-based service discovery in multi-relation social net-
works. In International Conference on Service-Oriented Computing, pages 664—-671. Springer, 2012. 11,
59, 62, 63, 64

[153] A. Louati, J. El Haddad, and S. Pinson. A distributed decision making and propagation approach
for trust-based service discovery in social networks. In Group Decision and Negotiation. A Process-
Oriented View: Joint INFORMS-GDN and EWG-DSS International Conference, GDN 2014, Toulouse,
France, June 10-13, 2014. Proceedings, pages 262-269. Springer, 2014. 11, 59, 62, 63, 64

[154] A.Louati, J. El Haddad, and S. Pinson. A multilevel agent-based approach for trustworthy service
selection in social networks. In 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence (WI) and Intelligent Agent Technologies (IAT), volume 3, pages 214-221. IEEE, 2014. 11, 59, 62,
63, 64

90 BIBLIOGRAPHY

[155] A. Louati, J. El Haddad, and S. Pinson. Towards agent-based and trust-oriented service discovery
approach in social networks. In TRUST@ AAMAS, pages 78-89. Citeseer, 2014. 11, 59, 62, 63, 64

[156] A. Louati, J. El Haddad, and S. Pinson. A multi-agent approach for trust-based service discovery
and selection in social networks. Scalable Computing: Practice and Experience, 16(4):381-402, 2015.
11,59, 62, 63, 64

[157] A. Louati, J. El Haddad, and S. Pinson. Trust-based coalition formation for dynamic service com-
position in social networks. In Web Information Systems Engineering—WISE 2015: 16th International
Conference, Miami, FL, USA, November 1-3, 2015, Proceedings, Part I 16, pages 570-585. Springer, 2015.
11, 20, 59, 64, 69

[158] N. Luhmann. Trust and power. John Wiley & Sons, 2018. 61
[159] A.D. Luise. Qos-aware cloud service selection, 2016. 38

[160] Z. Maamar, S. K. Mostefaoui, and H. Yahyaoui. Toward an agent-based and context-oriented ap-
proach for web services composition. IEEE transactions on knowledge and data engineering, 17(5):686—
697, 2005. 62

[161] Z. Maamar, N. C. Narendra, D. Benslimane, and S. Subramanian. Policies for context-driven trans-
actional web services. In Advanced Information Systems Engineering: 19th International Conference,
CAiSE 2007, Trondheim, Norway, June 11-15, 2007. Proceedings 19, pages 249-263. Springer, 2007. 15,
25,42

[162] Z. Maamar, L. K. Wives, Y. Badr, S. Elnaffar, K. Boukadi, and N. Faci. Linkedws: A novel web
services discovery model based on the metaphor of “social networks”. Simulation Modelling Practice
and Theory, 19(1):121-132, 2011. 67

[163] A.Maaradji, H. Hacid, J. Daigremont, and N. Crespi. Towards a social network based approach
for services composition. In 2010 IEEE International Conference on Communications, pages 1-5. IEEE,
2010. 16, 59, 61, 62, 63

[164] H.E.Mansour and T. Dillon. Dependability and rollback recovery for composite web services. IEEE
Transactions on Services Computing, 4(4):328-339, 2010. 6

[165] D.Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mcllraith, S. Narayanan, M. Paolucci,
B. Parsia, T. Payne, et al. Owl-s: Semantic markup for web services. W3C member submission, 22(4),
2004. 2

[166] S.Marzouk, A.]. Maalej, I. B. Rodriguez, and M. Jmaiel. Periodic checkpointing for strong mobility
of orchestrated web services. In 2009 congress on services-i, pages 203-210. IEEE, 2009. 6

[167] P. Massa and P. Avesani. Trust-aware recommender systems. In Proceedings of the 2007 ACM confer-
ence on Recommender systems, pages 17-24, 2007. 62, 63

[168] S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic web services. IEEE intelligent systems, 16(2):46-53,
2001. 5

[169] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A transaction model for multidatabase
systems. In 1992 12th International Conference on Distributed Computing System, pages 56-57. IEEE
Computer Society, 1992. 15

[170] X. Mei, A. Jiang, F. Zheng, and S. Li. Reliable transactional web service composition using refine-
ment method. In 2009 WASE International Conference on Information Engineering, volume 1, pages
422-426. IEEE, 2009. 24

[171] D. A. Menasce. Qos issues in web services. IEEE internet computing, 6(6):72-75,2002. 4

BIBLIOGRAPHY 91

[172] D. A. Menasce. Composing web services: A qos view. IEEE Internet computing, 8(6):88-90, 2004.
22,23

[173] M. Mirakhorli, D. Garcia, S. Dillon, K. Laporte, M. Morrison, H. Lu, V. Koscinski, and C. Enoch. A
landscape study of open source and proprietary tools for software bill of materials (sbom). arXiv
preprint arXiv:2402.11151,2024. 77

[174] S. Mistry, A. Bouguettaya, H. Dong, and A. K. Qin. Metaheuristic optimization for long-term iaas
service composition. IEEE Transactions on Services Computing, 11(1):131-143, 2016. 7

[175] M. Moghaddam and J. G. Davis. Service selection in web service composition: A comparative
review of existing approaches. Web services foundations, pages 321-346, 2013. 23

[176] S. B. Mokhtar, N. Georgantas, and V. Issarny. Cocoa: Conversation-based service composition in
pervasive computing environments with qos support. Journal of Systems and Software, 80(12):1941—
1955, 2007. 2, 37

[177] F.Montagut, R. Molva, and S. T. Golega. Automating the composition of transactional web services.
International Journal of Web Services Research (IJWSR), 5(1):24-41, 2008. 15, 23, 24, 25

[178] H. Moulin. Axioms of cooperative decision making. Number 15 in Econometric Society Monographs.
Cambridge university press, 1991. 34

[179] L Muller, R. Kowalczyk, and P. Braun. Towards agent-based coalition formation for service compo-
sition. In 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages 73-80.
IEEE, 2006. 62, 64

[180] B. Neville, M. Fasli, and J. Pitt. Utilising social recommendation for decision-making in distributed
multi-agent systems. Expert Systems with Applications, 42(6):2884-2906, 2015. 62

[181] S. Newman. Building microservices: designing fine-grained systems. " O’Reilly Media, Inc.", 2021. 76

[182] J. Odell, H. V. D. Parunak, and B. Bauer. Extending uml for agents. In Proceedings of the agent-oriented
information systems workshop at the 17th national conference on artificial intelligence, pages 3-17, 2000.
71

[183] E. O’Donoghue, B. Boles, C. Izurieta, and A. M. Reinhold. Impacts of software bill of materials
(sbom) generation on vulnerability detection. In Proceedings of the 2024 Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses, pages 67-76, 2023. 77

[184] M. Oriol, J. Marco, and X. Franch. Quality models for web services: A systematic mapping. Infor-
mation and software technology, 56(10):1167-1182, 2014. 3

[185] J. O’Sullivan, D. Edmond, and A. Ter Hofstede. What's in a service? Distributed and Parallel
Databases, 12:117-133, 2002. 4

[186] M. Ouzzaniand A. Bouguettaya. Efficient access to web services. IEEE Internet Computing, 8(2):34—
44,2004. 4

[187] H.-Y. Paik, A. L. Lemos, M. C. Barukh, B. Benatallah, and A. Natarajan. Web service implementation
and composition techniques, volume 256. Springer, 2017. 6

[188] I Paik, D. Maruyama, and M. N. Huhns. A framework for intelligent web services: Combined htn
and csp approach. In 2006 IEEE International Conference on Web Services (ICWS’06), pages 959-962.
IEEE, 2006. 62

[189] M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and directions. In Proceed-
ings of the Fourth International Conference on Web Information Systems Engineering, 2003. WISE 2003.,
pages 3-12. IEEE, 2003. 1

92 BIBLIOGRAPHY

[190] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: a research
roadmap. International Journal of Cooperative Information Systems, 17(02):223-255, 2008. 1, 5

[191] D. Perlman and B. Fehr. The development of intimate relationships. Sage Publications, Inc, 1987. 61

[192] P. F. Pires, M. R. Benevides, and M. Mattoso. Building reliable web services compositions. In Net.
ObjectDays: International Conference on Object-Oriented and Internet-Based Technologies, Concepts, and
Applications for a Networked World, pages 59-72. Springer, 2002. 42

[193] S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composition. In Proc. of
the Eleventh International World Wide Web Conference, Honolulu, HI, volume 45, 2002. 62

[194] A. Portilla, G. Vargas-Solar, C. Collet, J.-L. Zechinelli-Martini, and L. Garcia-Bafiuelos. Contract
based behavior model for services coordination. In International Conference on Web Information Sys-
tems and Technologies, pages 109-123. Springer, 2007. 23

[195] A. Portilla, G. Vargas-Solar, C. Collet, J.-L. Zechinelli-Martini, and L. Garcia-Bafiuelos. Contract
based behavior model for services coordination. In Web Information Systems and Technologies: Third
International Conference, WEBIST 2007, Barcelona, Spain, March 3-6, 2007, Revised Selected Papers 3,
pages 109-123. Springer, 2008. 42

[196] R.Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou. Cloud resource orchestration program-
ming: overview, issues, and directions. IEEE Internet Computing, 19(5):46-56, 2015. 5

[197] M. Rukoz, Y. Cardinale, and R. Angarita. Faceta*: Checkpointing for transactional composite web
service execution based on petri-nets. Procedia Computeri Science, 10:874-879, 2012. 42,43

[198] J. Sabater and C. Sierra. Regret: reputation in gregarious societies. In Proceedings of the fifth interna-
tional conference on Autonomous agents, pages 194-195, 2001. 62

[199] J. Sabater-Mir and L. Vercouter. Trust and reputation in multiagent systems. Multiagent systems,
page 381, 2013. 61

[200] M. Schiéfer, P. Dolog, and W. Nejdl. An environment for flexible advanced compensations of web
service transactions. ACM Transactions on the Web (TWEB), 2(2):1-36, 2008. 42

[201] A. Schrijver et al. Combinatorial optimization: polyhedra and efficiency. Springer, 2003. 7

[202] D.Schuller, A. Miede, J. Eckert, U. Lampe, A. Papageorgiou, and R. Steinmetz. Qos-based optimiza-
tion of service compositions for complex workflows. In Service-Oriented Computing: 8th International
Conference, ICSOC 2010, San Francisco, CA, USA, December 7-10, 2010. Proceedings 8, pages 641-648.
Springer, 2010. 23, 26

[203] D. Schuller, A. Polyvyanyy, L. Garcia-Bafnuelos, and S. Schulte. Optimization of complex qos-aware
service compositions. In Service-Oriented Computing: 9th International Conference, ICSOC 2011, Pa-
phos, Cyprus, December 5-8, 2011 Proceedings 9, pages 452-466. Springer, 2011. 23, 26

[204] Z.Shen and J. Su. Web service discovery based on behavior signatures. In 2005 IEEE International
Conference on Services Computing (SCC’05) Vol-1, volume 1, pages 279-286. IEEE, 2005. 5

[205] F. Siala, S. Lajmi, and K. Ghédira. Multi-agent selection of multiple composite web services based
on cbr method and driven by qos. In Proceedings of the 13th International Conference on Information
Integration and Web-based Applications and Services, pages 90-97, 2011. 62

[206] C.Sierra and J. Debenham. Information-based reputation. In International Conference on Reputation:
Theory and Technology. CNR-National Research Council, 2009. 62

[207] B.Singhand S. Gautam. The impact of software development process on software quality: a review.
In 2016 8th international conference on computational intelligence and communication networks (CICN),
pages 666—672, 2016. 3

BIBLIOGRAPHY 93

[208] R.Singh and K. Kumar. Software fault prediction in service-oriented based systems. In 2024 IEEE
International Conference on Computing, Power and Communication Technologies (IC2PCT), volume 5,
pages 1131-1136. IEEE, 2024. 43

[209] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. Hitn planning for web service composition using
shop2. Journal of Web Semantics, 1(4):377-396, 2004. 62

[210] T. Stalnaker, N. Wintersgill, O. Chaparro, M. Di Penta, D. M. German, and D. Poshyvanyk. Boms
away! inside the minds of stakeholders: A comprehensive study of bills of materials for software
systems. In Proceedings of the 46th IEEE | ACM International Conference on Software Engineering, pages
1-13,2024. 77

[211] V. Stantchev and C. Schropfer. Service-level enforcement in web-services-based systems. Interna-
tional Journal of Web and Grid Services, 5(2):130-154, 2009. 5

[212] Z. Stojanovic, A. Dahanayake, et al. Service-oriented software system engineering: challenges and prac-
tices. Idea Group Publishing, 2005. 1

[213] A. Strunk. Qos-aware service composition: A survey. In 2010 Eighth IEEE European Conference on
Web Services, pages 67-74. IEEE, 2010. 23

[214] L.Sun, S. Wang, J. Li, Q. Sun, and F. Yang. Qos uncertainty filtering for fast and reliable web service
selection. In 2014 IEEE International Conference on Web Services, pages 550-557. IEEE, 2014. 38

[215] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery, interaction and
composition of semantic web services. Journal of Web semantics, 1(1):27-46, 2003. 5

[216] M. Szell, R. Lambiotte, and S. Thurner. Multirelational organization of large-scale social networks
in an online world. Proceedings of the National Academy of Sciences, 107(31):13636-13641, 2010. 64

[217] C.Szyperski, D. Gruntz, and S. Murer. Component software: beyond object-oriented programming. Pear-
son Education, 2002. 5

[218] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Dependability in the web services architec-
ture. In Architecting dependable systems, pages 90-109. Springer, 2007. 39

[219] H. Tong, J. Cao, S. Zhang, and M. Li. A distributed agent coalition algorithm for web service com-
position. In 2009 Congress on Services-1, pages 62—69. IEEE, 2009. 62

[220] H. Tong,]J.Cao, S. Zhang, and M. Li. A distributed algorithm for web service composition based on
service agent model. IEEE Transactions on Parallel and Distributed Systems, 22(12):2008-2021, 2011.
62

[221] I. Trummer, B. Faltings, and W. Binder. Multi-objective quality-driven service selection—a fully
polynomial time approximation scheme. IEEE Transactions on Software Engineering, 40(2):167-191,
2013. 23,24, 26

[222] H.-L. Truong and S. Dustdar. Principles for engineering iot cloud systems. IEEE Cloud Computing,
2(2):68-76,2015. 5

[223] W. M. Van der Aalst. Process mining: Overview and opportunities. ACM Transactions on Manage-
ment Information Systems (TMIS), 3(2):1-17, 2012. 78

[224] W. M. Van der Aalst. Data science in action. In Process mining: Data science in action, pages 3-23.
Springer, 2016. 76, 78

[225] W. M. Van der Aalst. Object-centric process mining: unraveling the fabric of real processes. Mathe-
matics, 11(12):2691, 2023. 78

94 BIBLIOGRAPHY

226|] W. M. Van der Aalst, A. P. Barros, A. H. Ter Hofstede, and B. Kiepuszewski. Advanced workflow
P
patterns. In International Conference on Cooperative Information Systems, pages 18-29. Springer, 2000.
13

[227] W. M. Van Der Aalst and A. H. Ter Hofstede. Yawl: yet another workflow language. Information
systems, 30(4):245-275, 2005. 6, 13

[228] M. Vargas-Santiago, S. E. P. Herndndez, L. A. Morales-Rosales, and H. H. Kacem. Survey on web
services fault tolerance approaches based on checkpointing mechanisms. J. Softw., 12(7):507-525,
2017. 42

[229] K. Vidyasankar and G. Vossen. A multilevel model for web service composition. In Proceedings of
IEEE International Conference on Web Services, pages 462-469. IEEE, 2004. 24

[230] L.-H. Vu, M. Hauswirth, and K. Aberer. Qos-based service selection and ranking with trust and
reputation management. In OTM Confederated International Conferences" On the Move to Meaningful
Internet Systems", pages 466—483. Springer, 2005. 59, 61, 62

[231] L. Wang, R. Ranjan, J. Chen, and B. Benatallah. Cloud computing: methodology, systems, and applica-
tions. CRC press, 2017. 5

[232] S. Wang, Z. Zheng, Q. Sun, H. Zou, and F. Yang. Cloud model for service selection. In 2011 IEEE
conference on computer communications workshops (INFOCOM WKSHPS), pages 666-671. IEEE, 2011.
38

[233] Y. Wang, L. Li, and G. Liu. Social context-aware trust inference for trust enhancement in social
network based recommendations on service providers. World Wide Web, 18(1):159-184, 2015. 62,
63, 64, 68

[234] Y. Wang and M. P. Singh. Trust representation and aggregation in a distributed agent system. In
AAAI volume 6, pages 1425-1430, 2006. 62

[235] Y. Wang and J. Vassileva. Toward trust and reputation based web service selection: A survey. In-
ternational Transactions on Systems Science and Applications, 3(2):118-132, 2007. 59, 61

[236] P. Wegner. Concepts and paradigms of object-oriented programming. ACM Sigplan Oops Messenger,
1(1):7-87,1990. 5

[237] B. Wu, C.-H. Chi, and S. Xu. Service selection model based on qos reference vector. In 2007 IEEE
Congress on Services, pages 270-277. IEEE, 2007. 22, 23

[238] J. Wu and F. Yang. Qos prediction for composite web services with transactions. In Service-Oriented
Computing ICSOC 2006: 4th International Conference, Chicago, IL, USA, December 4-7, 2006, Workshops
Proceedings 4, pages 86-94. Springer, 2007. 24

[239] B.Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu. An empirical study on software bill of materials: Where we
stand and the road ahead. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pages 2630-2642. IEEE, 2023. 76

[240] J. Xu, K. Chen, and S. Reiff-Marganiec. Using markov decision process model with logic scoring
of preference model to optimize htn web services composition. International Journal of Web Services
Research (IJWSR), 8(2):53-73, 2011. 62

[241] J. Xu, Z. Li, H. Chi, M. Wang, C. Guan, S. Reiff-Marganiec, and H. Shen. Optimized composite
service transactions through execution results prediction. In 2016 IEEE International Conference on
Web Services (ICWS), pages 690-693. IEEE, 2016. 6

[242] Z.Xu, P. Martin, W. Powley, and F. Zulkernine. Reputation-enhanced qos-based web services dis-
covery. In IEEE International Conference on Web Services (ICWS 2007), pages 249-256. IEEE, 2007. 59,
61, 62

BIBLIOGRAPHY 95

[243] Y. Yan, P. Poizat, and L. Zhao. Repairing service compositions in a changing world. In Software
Engineering Research, Management and Applications 2010, pages 17-36. Springer, 2010. 6

[244] L. Yang, Y. Dai, B. Zhang, and Y. Gao. Dynamic selection of composite web services based on a
genetic algorithm optimized new structured neural network. In 2005 International Conference on
Cyberworlds (CW'05), pages 8—pp. IEEE, 2005. 23

[245] Z. Ye, A. Bouguettaya, and X. Zhou. Economic model-driven cloud service composition. ACM
Transactions on Internet Technology (TOIT), 14(2-3):1-19, 2014. 38

[246] Z.Ye, X. Zhou, and A. Bouguettaya. Genetic algorithm based qos-aware service compositions in
cloud computing. In International Conference on Database Systems for Advanced Applications, pages
321-334. Springer, 2011. 38

[247] A. Yeshchenko, C. Di Ciccio, J. Mendling, and A. Polyvyanyy. Comprehensive process drift detec-
tion with visual analytics. In International conference on conceptual modeling, pages 119-135. Springer,
2019. 78

[248] B. Yu and M. P. Singh. A social mechanism of reputation management in electronic communities.
In International Workshop on Cooperative Information Agents, pages 154-165. Springer, 2000. 62

[249] B. Yu and M. P. Singh. Searching social networks. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 65-72, 2003. 62, 63

[250] Q. Yu and A. Bouguettaya. Foundations for efficient web service selection. Springer Science & Business
Media, 2009. 5

[251] T. Yuand K.-J. Lin. Service selection algorithms for composing complex services with multiple qos
constraints. In Service-Oriented Computing-ICSOC 2005: Third International Conference, Amsterdam,
The Netherlands, December 12-15, 2005. Proceedings 3, pages 130-143. Springer, 2005. 23

[252] T. Yu and K.-J. Lin. Qcws: an implementation of qos-capable multimedia web services. Multimedia
Tools and Applications, 30(2):165-187, 2006. 62

[253] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web services selection with end-to-end qos
constraints. ACM Transactions on the Web (TWEB), 1(1):6-32, 2007. 5

[254] M. Zeleny. Multiple criteria decision making Kyoto 1975, volume 123. Springer Science & Business
Media, 2012. 28

[255] M. A. Zemni, S. Benbernou, and M. Carro. A soft constraint-based approach to qos-aware service
selection. In Service-Oriented Computing: 8th International Conference, ICSOC 2010, San Francisco, CA,
USA, December 7-10, 2010. Proceedings 8, pages 596—602. Springer, 2010. 5

[256] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven web services
composition. In Proceedings of the 12th international conference on World Wide Web, pages 411-421,
2003. 6

[257] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. Qos-aware middle-
ware for web services composition. IEEE Transactions on software engineering, 30(5):311-327, 2004.
3,5,7,21,22,23,26,33

258] W. Zhang, C. K. Chang, T. Feng, and H.-y. Jiang. Qos-based dynamic web service composition with
& 8 & Y & y P
ant colony optimization. In 2010 IEEE 34th Annual Computer Software and Applications Conference,
pages 493-502. IEEE, 2010. 23

[259] W. Zhang, Y. Yang, S. Tang, and L. Fang. Qos-driven service selection optimization model and al-
gorithms for composite web services. In 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), volume 2, pages 425-431. IEEE, 2007. 22, 24

96 BIBLIOGRAPHY

[260] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou. Sinan: Ml-based and qos-aware resource
management for cloud microservices. In Proceedings of the 26th ACM international conference on ar-
chitectural support for programming languages and operating systems, pages 167181, 2021. 24

[261] Y. Zhang, B. Zhang, and C. Zhang. Correlation-supported composite service reselection. In 2014
IEEE International Conference on Web Services, pages 510-517. IEEE, 2014. 38

[262] H. Zhao, Z. Benomar, T. Pfandzelter, and N. Georgantas. Supporting multi-cloud in serverless
computing. In 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC),
pages 285-290. IEEE, 2022. 24

[263] Z.Zhao,]. Wei, L. Lin, and X. Ding. A concurrency control mechanism for composite service sup-
porting user-defined relaxed atomicity. In 2008 32nd Annual IEEE International Computer Software
and Applications Conference, pages 275-278. IEEE, 2008. 15, 42

[264] X.Zheng and Y. Yan. An efficient syntactic web service composition algorithm based on the plan-
ning graph model. In 2008 IEEE International Conference on Web Services, pages 691-699. IEEE, 2008.
6

[265] Z.Zheng and M. R. Lyu. A distributed replication strategy evaluation and selection framework for
fault tolerant web services. In 2008 IEEE international conference on web services, pages 145-152. IEEE,
2008. 5

[266] Z.Zheng and M. R. Lyu. QoS management of web services. Springer, 2013. 5

[267] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Wsrec: A collaborative filtering based web service rec-
ommender system. In 2009 IEEE international conference on web services, pages 437-444. IEEE, 2009.
5

[268] Z.Zheng, H. Ma, M. R. Lyu, and I. King. Qos-aware web service recommendation by collaborative
filtering. IEEE Transactions on services computing, 4(2):140-152, 2010. 5

[269] Z.Zheng, X. Wu, Y. Zhang, M. R. Lyu, and J. Wang. Qos ranking prediction for cloud services. IEEE
transactions on parallel and distributed systems, 24(6):1213-1222,2012. 38

RESUME

Les systemes orientés services ont émergé pour offrir des architectures logicielles flexibles,
réutilisables et modulaires. lls sont constitués de services indépendants et faiblement couplés,
communiquant via des protocoles normalisés et encapsulant des fonctions métier spécifiques. La
composition de ces services permet de créer des processus complexes a partir de fonctionnalités
existantes. Mes recherches portent sur l'intégration des propriétés non fonctionnelles dans la
sélection, la composition et la réparation des services. Avec mes collaborateurs, nous avons étudié
I'optimisation de la variabilité des services, la fiabilité des compositions, la mise en ceuvre de
stratégies de reprise aprés panne et la construction de la confiance entre fournisseurs de services.
Nous avons développé des algorithmes heuristiques et exacts pour sélectionner les services selon
des critéres de Qualité de Service (QoS) tels que le temps de réponse et le colt, tout en équilibrant
les contraintes des utilisateurs. Notre travail intégre également des propriétés transactionnelles afin
de renforcer la robustesse et la fiabilité des services. Pour gérer les défaillances inévitables dans
des environnements dynamiques, nous avons proposé des mécanismes de reprise — avant,
arriere et par points de contrble — modélisés a I'aide de réseaux de Petri et de méthodes fondées
sur les graphes, garantissant une récupération cohérente des compositions de services. Enfin,
nous avons exploré l'intégration de la confiance et des interactions sociales dans les services
fournis par '’humain, afin d’enrichir les modéles de découverte, de sélection et de composition des
services. Ce manuscrit présente les principales contributions de nos travaux, expose ma vision de
I'évolution des systémes orientés services et ouvre la voie a de futures travaux de recherche.

ABSTRACT

Service-oriented systems emerged to provide flexible, reusable, and modular software
architectures. They comprise independent, loosely coupled services that communicate through
standardized protocols and encapsulate specific business functions. By composing these services,
complex workflows can be created from existing functionalities. My research focuses on integrating
non-functional properties into service selection, composition, and recovery. Together with
collaborators, | have investigated optimizing service variability, ensuring reliability, implementing
fault recovery, and fostering trust among service providers. We developed heuristic and exact
algorithms to select services based on their Quality-of-Service (QoS) attributes such as response
time and cost, balancing user constraints and performance. Our work also integrates transactional
properties to enhance reliability and robustness. To address inevitable failures in dynamic
environments, we proposed recovery mechanisms — forward, backward, and checkpoint-based —
modeled with Petri nets and graph-based methods to ensure consistent recovery. Additionally, we
explored trust and sociability in human-provided services, integrating these factors into service
discovery, selection, and composition. This manuscript summarizes our main contributions,
outlines my vision for advancing service-oriented systems, and identifies promising directions for
future research.

	Introduction
	Context
	Research Challenges
	Overview of Contributions
	Outline

	Concepts and Definitions
	User Requirements
	Component Service Specification
	Composite Service Specification

	Efficiency and Consistency in Service Selection and Composition
	Motivations
	State-of-the-art and Contributions
	Heuristic Approaches
	Exact Approaches
	A Glimpse on Further Contributions
	Summary

	Reliability in Service Composition Execution
	Motivations
	State-of-the-art and Contributions
	Forward and Backward Recovery
	Semantic and Checkpointing Recovery
	A Glimpse on Further Contributions
	Summary

	Trustworthiness in Service Selection and Composition
	Motivations
	State-of-the-art and Contributions
	Trust-driven Service Discovery and Selection
	Trust-driven Service Composition
	Summary

	Conclusion and Future work
	Summary of contributions
	Towards Large-scale Service-oriented Systems

	Bibliography

